These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 1432712)

  • 1. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():33-61. PubMed ID: 1432712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():13-31. PubMed ID: 1432706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons.
    Duchen MR
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):41-50. PubMed ID: 1373604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of type I cells dissociated from the rabbit carotid body to hypoxia.
    Biscoe TJ; Duchen MR
    J Physiol; 1990 Sep; 428():39-59. PubMed ID: 2231419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Leyssens A; Nowicky AV; Patterson L; Crompton M; Duchen MR
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.
    Di Lisa F; Blank PS; Colonna R; Gambassi G; Silverman HS; Stern MD; Hansford RG
    J Physiol; 1995 Jul; 486 ( Pt 1)(Pt 1):1-13. PubMed ID: 7562625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
    Wyatt CN; Buckler KJ
    J Physiol; 2004 Apr; 556(Pt 1):175-91. PubMed ID: 14724184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells.
    Buckler KJ; Turner PJ
    J Physiol; 2013 Jul; 591(14):3549-63. PubMed ID: 23671162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial function in Leydig cell steroidogenesis.
    Hales DB; Allen JA; Shankara T; Janus P; Buck S; Diemer T; Hales KH
    Ann N Y Acad Sci; 2005 Dec; 1061():120-34. PubMed ID: 16469751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular basis of transduction in carotid chemoreceptors.
    Biscoe TJ; Duchen MR
    Am J Physiol; 1990 Jun; 258(6 Pt 1):L271-8. PubMed ID: 2193540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acute hypoxia on glomus cell Em and psi m as measured by fluorescence imaging.
    Roy A; Li J; Al-Mehdi AB; Mokashi A; Lahiri S
    J Appl Physiol (1985); 2002 Dec; 93(6):1987-98. PubMed ID: 12391083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons.
    Vanden Berghe P; Kenyon JL; Smith TK
    J Neurosci; 2002 Aug; 22(16):6962-71. PubMed ID: 12177194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase.
    Chinopoulos C; Tretter L; Adam-Vizi V
    J Neurochem; 1999 Jul; 73(1):220-8. PubMed ID: 10386974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors.
    Smaili SS; Russell JT
    Cell Calcium; 1999; 26(3-4):121-30. PubMed ID: 10598276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice.
    Mironov SL; Richter DW
    J Physiol; 2001 May; 533(Pt 1):227-36. PubMed ID: 11351030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The modulation of action potential generation by calcium-induced calcium release is enhanced by mitochondrial inhibitors in mudpuppy parasympathetic neurons.
    Barstow KL; Locknar SA; Merriam LA; Parsons RL
    Neuroscience; 2004; 124(2):327-39. PubMed ID: 14980383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload.
    Minezaki KK; Suleiman MS; Chapman RA
    J Physiol; 1994 May; 476(3):459-71. PubMed ID: 8057254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells.
    Buckler KJ; Vaughan-Jones RD
    J Physiol; 1994 May; 476(3):423-8. PubMed ID: 8057251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation between alterations in plasma and mitochondrial membrane potentials in synaptosomes using a carbocyanine dye.
    Hare MF; Atchison WD
    J Neurochem; 1992 Apr; 58(4):1321-9. PubMed ID: 1548466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration.
    Mojet MH; Mills E; Duchen MR
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):175-89. PubMed ID: 9350628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.