BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 1432721)

  • 1. Serotonin regulates the phase of the rat suprachiasmatic circadian pacemaker in vitro only during the subjective day.
    Medanic M; Gillette MU
    J Physiol; 1992 May; 450():629-42. PubMed ID: 1432721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists.
    Prosser RA; Dean RR; Edgar DM; Heller HC; Miller JD
    J Biol Rhythms; 1993; 8(1):1-16. PubMed ID: 8490207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock.
    Prosser RA; Lee HM; Wehner A
    Neuroscience; 2006 Oct; 142(2):547-55. PubMed ID: 16876330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local administration of serotonin agonists blocks light-induced phase advances of the circadian activity rhythm in the hamster.
    Weber ET; Gannon RL; Rea MA
    J Biol Rhythms; 1998 Jun; 13(3):209-18. PubMed ID: 9615285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate blocks serotonergic phase advances of the mammalian circadian pacemaker through AMPA and NMDA receptors.
    Prosser RA
    J Neurosci; 2001 Oct; 21(19):7815-22. PubMed ID: 11567072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-resetting effect of 8-OH-DPAT, a serotonin1A receptor agonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nuclei in vitro.
    Shibata S; Tsuneyoshi A; Hamada T; Tominaga K; Watanabe S
    Brain Res; 1992 Jun; 582(2):353-6. PubMed ID: 1393558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT-induced phase advances of SCN neuronal firing.
    Sprouse J; Li X; Stock J; McNeish J; Reynolds L
    J Biol Rhythms; 2005 Apr; 20(2):122-31. PubMed ID: 15834109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin phase-shifts the mouse suprachiasmatic circadian clock in vitro.
    Prosser RA
    Brain Res; 2003 Mar; 966(1):110-5. PubMed ID: 12646314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melatonin inhibits in vitro serotonergic phase shifts of the suprachiasmatic circadian clock.
    Prosser RA
    Brain Res; 1999 Feb; 818(2):408-13. PubMed ID: 10082826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors?
    Sprouse J; Reynolds L; Braselton J; Schmidt A
    Synapse; 2004 Nov; 54(2):111-8. PubMed ID: 15352136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of suprachiasmatic nuclei and intergeniculate leaflets in mediating the phase-shifting effects of a serotonergic agonist and their photic modulation during subjective day.
    Challet E; Scarbrough K; Penev PD; Turek FW
    J Biol Rhythms; 1998 Oct; 13(5):410-21. PubMed ID: 9783232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms.
    Gannon RL
    Neuroscience; 2003; 119(2):567-76. PubMed ID: 12770569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational and transcriptional inhibitors block serotonergic phase advances of the suprachiasmatic nucleus circadian pacemaker in vitro.
    Jovanovska A; Prosser RA
    J Biol Rhythms; 2002 Apr; 17(2):137-46. PubMed ID: 12002160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agonists.
    Edgar DM; Miller JD; Prosser RA; Dean RR; Dement WC
    J Biol Rhythms; 1993; 8(1):17-31. PubMed ID: 8490208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.
    Moriya T; Yoshinobu Y; Ikeda M; Yokota S; Akiyama M; Shibata S
    Br J Pharmacol; 1998 Nov; 125(6):1281-7. PubMed ID: 9863658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent.
    Cuesta M; Mendoza J; Clesse D; PĂ©vet P; Challet E
    Exp Neurol; 2008 Apr; 210(2):501-13. PubMed ID: 18190911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonergic stimulation and nonphotic phase-shifting in hamsters.
    Bobrzynska KJ; Godfrey MH; Mrosovsky N
    Physiol Behav; 1996 Feb; 59(2):221-30. PubMed ID: 8838598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus.
    Ehlen JC; Grossman GH; Glass JD
    J Neurosci; 2001 Jul; 21(14):5351-7. PubMed ID: 11438611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.