These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14328)

  • 1. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.
    Tran-Dinh S; Neumann JM
    Nucleic Acids Res; 1977 Feb; 4(2):397-403. PubMed ID: 14328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy.
    Son TD; Roux M; Ellenberger M
    Nucleic Acids Res; 1975 Jul; 2(7):1101-10. PubMed ID: 239391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphorus-magnetic-resonance study of the interaction of Mg2+ with adenyl-5'-yl imidodiphosphate. Binding sites of Mg2+ ion on the phosphate chain.
    Tran-Dinh S; Roux M
    Eur J Biochem; 1977 Jun; 76(1):245-9. PubMed ID: 18351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diadenosine 5',5'''-P1, P4-tetraphosphate alpha, beta-phosphorylase from yeast supports nucleoside diphosphate-phosphate exchange.
    Guranowski A; Blanquet S
    J Biol Chem; 1986 May; 261(13):5943-6. PubMed ID: 3009435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations.
    Petrová P; Koca J; Imberty A
    Eur J Biochem; 2001 Oct; 268(20):5365-74. PubMed ID: 11606199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P nuclear magnetic resonance study of phosphoribosyldiphosphate and its interaction with magnesium ions.
    Smithers GW; O'Sullivan WJ
    J Biol Chem; 1982 Jun; 257(11):6164-70. PubMed ID: 6176581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton and phosphorus-31 NMR study of the dependence of diadenosine tetraphosphate conformation on metal ions.
    Kolodny NH; Collins LJ
    J Biol Chem; 1986 Nov; 261(31):14571-5. PubMed ID: 3021745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution conformation of various uridine diphosphoglucose salts as probed by NMR spectroscopy.
    Monteiro C; Neyret S; Leforestier J; Hervé du Penhoat C
    Carbohydr Res; 2000 Oct; 329(1):141-55. PubMed ID: 11086694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between Li+ and Mg2+ for ATP and ADP in aqueous solution: a multinuclear NMR study.
    Abraha A; de Freitas DE; Margarida M; Castro CA; Geraldes CF
    J Inorg Biochem; 1991 May; 42(3):191-8. PubMed ID: 1880501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the magnesium(II) ion interact with the alpha-phosphate of adenosine triphosphate? An investigation by oxygen-17 nuclear magnetic resonance.
    Huang SL; Tsai MD
    Biochemistry; 1982 Mar; 21(5):951-9. PubMed ID: 7074064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of 5'-nucleotidase activity by divalent cations and nucleotides.
    Mallol J; Bozal J
    J Neurochem; 1983 May; 40(5):1205-11. PubMed ID: 6300329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding.
    Jaffe EK; Cohn M
    Biochemistry; 1978 Feb; 17(4):652-7. PubMed ID: 23826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of nucleoside 5'-polyphosphates from nucleotides and trimetaphosphate.
    Lohrmann R
    J Mol Evol; 1975 Dec; 6(4):237-52. PubMed ID: 1541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction.
    McConnell TS; Herschlag D; Cech TR
    Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOTPME: a 31P NMR probe for measurement of divalent cations in biological systems.
    Ramasamy R; Lazar I; Brucher E; Sherry AD; Malloy CR
    FEBS Lett; 1991 Mar; 280(1):121-4. PubMed ID: 2009956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational study of phosphate modes in GDP and GTP and their interaction with magnesium in aqueous solution.
    Wang JH; Xiao DG; Deng H; Callender R; Webb MR
    Biospectroscopy; 1998; 4(4):219-27. PubMed ID: 9706381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of a complex containing ATP, Mg2+, and spermine. Structural evidence and biological significance.
    Meksuriyen D; Fukuchi-Shimogori T; Tomitori H; Kashiwagi K; Toida T; Imanari T; Kawai G; Igarashi K
    J Biol Chem; 1998 Nov; 273(47):30939-44. PubMed ID: 9812989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P nuclear magnetic resonance of phosphonic acid analogues of adenosine nucleotides as functions of pH and magnesium ion concentration.
    Schliselfeld LH; Burt CT; Labotka RJ
    Biochemistry; 1982 Jan; 21(2):317-20. PubMed ID: 6896156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.