These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14328450)

  • 1. NA AND K CONTENT OF GLIAL CELLS AND NEURONS DETERMINED BY FLAME PHOTOMETRY IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH.
    NICHOLLS JG; KUFFLER SW
    J Neurophysiol; 1965 May; 28():519-25. PubMed ID: 14328450
    [No Abstract]   [Full Text] [Related]  

  • 2. GLIAL CELLS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH; THEIR MEMBRANE POTENTIAL AND POTASSIUM CONTENT.
    KUFFLER SW; NICHOLIS JG
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1964 May; 248():216-22. PubMed ID: 14230235
    [No Abstract]   [Full Text] [Related]  

  • 3. EXTRACELLULAR SPACE AS A PATHWAY FOR EXCHANGE BETWEEN BLOOD AND NEURONS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: IONIC COMPOSITION OF GLIAL CELLS AND NEURONS.
    NICHOLLS JG; KUFFLER SW
    J Neurophysiol; 1964 Jul; 27():645-71. PubMed ID: 14194964
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of potassium uptake in neuropile glial cells in the central nervous system of the leech.
    Wuttke WA
    J Neurophysiol; 1990 May; 63(5):1089-97. PubMed ID: 2358863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of increased extracellular K on the elemental composition and water content of neuron and glial cells in leech CNS.
    Saubermann AJ; Stockton JD
    J Neurochem; 1988 Dec; 51(6):1797-807. PubMed ID: 3183660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia.
    Saubermann AJ; Castiglia CM; Foster MC
    Brain Res; 1992 Apr; 577(1):64-72. PubMed ID: 1521148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM: PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP.
    KUFFLER SW; POTTER DD
    J Neurophysiol; 1964 Mar; 27():290-320. PubMed ID: 14129773
    [No Abstract]   [Full Text] [Related]  

  • 9. Uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the leech central nervous system.
    Wolfe DE; Nicholls JG
    J Neurophysiol; 1967 Nov; 30(6):1593-609. PubMed ID: 6066456
    [No Abstract]   [Full Text] [Related]  

  • 10. Distribution of 14C-labeled sucrose, inulin, and dextran in extracellular spaces and in cells of the leech central nervous system.
    Nicholls JG; Wolfe DE
    J Neurophysiol; 1967 Nov; 30(6):1574-92. PubMed ID: 6066455
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):555-69. PubMed ID: 5387026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium activity in leech neuropile glial cells changes with external potassium concentration.
    Schlue WR; Wuttke W
    Brain Res; 1983 Jul; 270(2):368-72. PubMed ID: 6883105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-sensitive, calcium-independent potassium conductance in the leech giant glial cell.
    Nett W; Deitmer JW
    Pflugers Arch; 1998 Jul; 436(4):608-14. PubMed ID: 9683735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for the passive regulation of extracellular K+ in the central nervous system: the implications of invertebrate studies.
    Abbott NJ; Pichon Y
    Adv Exp Med Biol; 1976; 69():151-64. PubMed ID: 782189
    [No Abstract]   [Full Text] [Related]  

  • 15. Elemental composition and water content of neuron and glial cells in the central nervous system of the North American medicinal leech (Macrobdella decora).
    Saubermann AJ; Scheid VL
    J Neurochem; 1985 Mar; 44(3):825-34. PubMed ID: 3973594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of serotonin and carbachol on glial and neuronal rubidium uptake in leech CNS.
    Foster MC; Castiglia CM; Saubermann AJ
    Brain Res; 1992 Dec; 597(2):181-8. PubMed ID: 1472992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular space in the central nervous system of the leech, Mooreobdella fervida.
    Van Harreveld A; Khattab FI; Steiner J
    J Neurobiol; 1969; 1(1):23-40. PubMed ID: 4334643
    [No Abstract]   [Full Text] [Related]  

  • 19. Glial signalling in response to neuronal activity in the leech central nervous system.
    Deitmer JW; Lohr C; Britz FC; Schmidt J
    Prog Brain Res; 2001; 132():215-26. PubMed ID: 11544990
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional role of the sodium-bicarbonate cotransport of glial cells in the leech central nervous system.
    Deitmer JW; Schlue WR
    Acta Physiol Scand Suppl; 1989; 582():31. PubMed ID: 2816433
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.