BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 14342240)

  • 1. THE UTILIZATION OF ACONATE AND ITACONATE BY MICROCOCCUS SP.
    COOPER RA; ITIABA K; KORNBERG HL
    Biochem J; 1965 Jan; 94(1):25-31. PubMed ID: 14342240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediary carbon metabolism of Azospirillum brasilense.
    Loh WH; Randles CI; Sharp WR; Miller RH
    J Bacteriol; 1984 Apr; 158(1):264-8. PubMed ID: 6425263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri.
    Söhling B; Gottschalk G
    Eur J Biochem; 1993 Feb; 212(1):121-7. PubMed ID: 8444151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages.
    Durieux PO; Schütz P; Brun R; Köhler P
    Mol Biochem Parasitol; 1991 Mar; 45(1):19-27. PubMed ID: 1904988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species.
    Padmanabhan R; Tchen TT
    J Bacteriol; 1969 Oct; 100(1):398-402. PubMed ID: 4390503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and characterization of NAD- and NADP-specific succinate-semialdehyde dehydrogenase from Escherichia coli K-12 3300.
    Cozzani I; Fazio AM; Felici E; Barletta G
    Biochim Biophys Acta; 1980 Jun; 613(2):309-17. PubMed ID: 7004491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE OXIDATION OF D- AND L-GLYCERATE BY RAT LIVER.
    DAWKINS PD; DICKENS F
    Biochem J; 1965 Feb; 94(2):353-67. PubMed ID: 14346088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.
    Kronen M; Sasikaran J; Berg IA
    Appl Environ Microbiol; 2015 Aug; 81(16):5632-8. PubMed ID: 26070669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHOSPHOENOLPYRUVATE CARBOXYLASE ACTIVITY AND GLYCOGENESIS IN THE FLATWORM, HYMENOLEPIS DIMINUTA.
    PRESCOTT LM; CAMPBELL JW
    Comp Biochem Physiol; 1965 Mar; 14():491-511. PubMed ID: 14314988
    [No Abstract]   [Full Text] [Related]  

  • 11. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENZYMES OF THE TRICARBOXYLIC ACID CYCLE IN ACETIC ACID BACTERIA.
    WILLIAMS PJ; RAINBOW C
    J Gen Microbiol; 1964 May; 35():237-47. PubMed ID: 14179672
    [No Abstract]   [Full Text] [Related]  

  • 13. PYRITHIAMINE ADAPTATION OF STAPHYLOCOCCUS AUREUS. II. TRICARBOXYLIC ACID CYCLE AND RELATED ENZYMES.
    DAS SK; CHATTERJEE GC
    J Bacteriol; 1963 Dec; 86(6):1157-64. PubMed ID: 14086084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Itaconate Alters Succinate and Coenzyme A Metabolism via Inhibition of Mitochondrial Complex II and Methylmalonyl-CoA Mutase.
    Cordes T; Metallo CM
    Metabolites; 2021 Feb; 11(2):. PubMed ID: 33670656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources of acetyl-CoA entering the tricarboxylic acid cycle as determined by analysis of succinate 13C isotopomers.
    Jones JG; Sherry AD; Jeffrey FM; Storey CJ; Malloy CR
    Biochemistry; 1993 Nov; 32(45):12240-4. PubMed ID: 8218301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The utilization of itaconate by Pseudomonas sp.
    Cooper RA; Kornberg HL
    Biochem J; 1964 Apr; 91(1):82-91. PubMed ID: 4284209
    [No Abstract]   [Full Text] [Related]  

  • 17. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage.
    Németh B; Doczi J; Csete D; Kacso G; Ravasz D; Adams D; Kiss G; Nagy AM; Horvath G; Tretter L; Mócsai A; Csépányi-Kömi R; Iordanov I; Adam-Vizi V; Chinopoulos C
    FASEB J; 2016 Jan; 30(1):286-300. PubMed ID: 26358042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EFFECT OF GLUCOSE ON THE UTILIZATION OF SUCCINATE AND THE ACTIVITY OF TRICARBOXYLIC ACID-CYCLE ENZYMES IN ESCHERICHIA COLI.
    HALPERN YS; EVEN-SHOSHAN A; ARTMAN M
    Biochim Biophys Acta; 1964 Nov; 93():228-36. PubMed ID: 14251300
    [No Abstract]   [Full Text] [Related]  

  • 20. METABOLISM OF METHYLMALONYL-COA AND THE ROLE OF BIOTIN AND B12 COENZYMES.
    WOOD HG; KELLERMEYER RW; STJERNHOLM R; ALLEN SH
    Ann N Y Acad Sci; 1964 Apr; 112():660-79. PubMed ID: 14167300
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.