These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 14343124)

  • 1. THE INCORPORATION OF LABELLED AMINO SUGARS BY BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):155-8. PubMed ID: 14343124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):147-54. PubMed ID: 14343123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of amino sugar metabolism in Escherichia coli and isolation of mutants unable to degrade amino sugars.
    White RJ
    Biochem J; 1968 Feb; 106(4):847-58. PubMed ID: 4866432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis.
    Mobley HL; Doyle RJ; Streips UN; Langemeier SO
    J Bacteriol; 1982 Apr; 150(1):8-15. PubMed ID: 6174502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of tunicamycin on the glycosylation of lactating-rabbit mammary glycoproteins.
    Speake BK; White DA
    Biochem J; 1979 Jun; 180(3):481-9. PubMed ID: 486126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of lipid-linked sugars as intermediates in glycoprotein synthesis in rabbit mammary gland.
    Speake BK; White DA
    Biochem J; 1978 Feb; 170(2):273-83. PubMed ID: 565204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An examination of the inhibitory effects of N-iodoacetylglucosamine on Escherichia coli and isolation of resistant mutants.
    White RJ; Kent PW
    Biochem J; 1970 Jun; 118(1):81-7. PubMed ID: 4919471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of N-fluoroacetyl-D-glucosamine into hyaluronate by rabbit tracheal explants in organ culture.
    Winterbourne DJ; Barnaby RJ; Kent PW; Mian N
    Biochem J; 1979 Sep; 182(3):707-16. PubMed ID: 518560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tritium labelling of amino sugars at C-2 by alkaline epimerization in tritiated water.
    Rodén L; Jin J; Yu H; Campbell P
    Glycobiology; 1995 Mar; 5(2):167-73. PubMed ID: 7780191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autolysis of isolated cell walls of Bacillus licheniformis N.C.T.C. 6346 and Bacillus subtilis Marburg Strain 168. Separation of the products and characterization of the mucopeptide fragments.
    Hughes RC
    Biochem J; 1970 Oct; 119(5):849-60. PubMed ID: 4321754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.
    Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L
    Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.
    Dupont C; Clarke AJ
    J Bacteriol; 1991 Jul; 173(14):4318-24. PubMed ID: 2066331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAPER CHROMATOGRAPHY OF PNEUMOCOCCAL CELL-WALL HYDROLYSATES CONTAINING GLUCOSAMINE, GALACTOSAMINE, MURAMIC ACID, AND PEPTIDES.
    HORNUNG M
    J Bacteriol; 1963 Dec; 86(6):1345-6. PubMed ID: 14086112
    [No Abstract]   [Full Text] [Related]  

  • 15. Amino sugar assimilation by Escherichia coli.
    Rolls JP; Shuster CW
    J Bacteriol; 1972 Nov; 112(2):894-902. PubMed ID: 4563983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HEXOSAMINE METABOLISM. 3. THE UTILIZATION OF D-GLUCOSAMINE-1-14C AND N-ACETYL-D-GLUCOSAMINE-1-14C BY ASPERGILLUS PARASITICUS.
    MCGARRAHAN JF; MALEY F
    J Biol Chem; 1965 Jun; 240():2322-7. PubMed ID: 14304832
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of iodide on glucose, N-acetylglucosamine and leucine incorporation into acid-insoluble fraction of pig thyroid proteins in vitro.
    Głowacka D; Stelmach H; Jaroszewicz L
    Endocrinol Exp; 1981 Sep; 15(3):163-70. PubMed ID: 6975203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of anomers of 6-O-tosyl-1,3,4-tri-O-acetyl-N-acetyl-D-glucosamine and 1,6-anhydro-N-acetyl-beta-D-glucosamin.
    AKAGI M; TEJIMA S; HAGA M
    Chem Pharm Bull (Tokyo); 1962 Nov; 10():1039-42. PubMed ID: 14011482
    [No Abstract]   [Full Text] [Related]  

  • 19. Biosynthesis of intestinal mucins. Sialic acids of sheep colonic epithelial mucin.
    Kent PW; Draper P
    Biochem J; 1968 Jan; 106(1):293-9. PubMed ID: 5721465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OXIDATIVE ASSIMILATION BY BACILLUS MEGATERIUM.
    CLIFTON CE
    J Bacteriol; 1963 Jun; 85(6):1365-70. PubMed ID: 14047231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.