These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1434570)

  • 1. Three-dimensional finite element modelling of bone: effects of element size.
    Keyak JH; Skinner HB
    J Biomed Eng; 1992 Nov; 14(6):483-9. PubMed ID: 1434570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of an automated method of three-dimensional finite element modelling of bone.
    Keyak JH; Fourkas MG; Meagher JM; Skinner HB
    J Biomed Eng; 1993 Nov; 15(6):505-9. PubMed ID: 8277756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Feb; 32(2):165-73. PubMed ID: 10052922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress.
    Hollister SJ; Brennan JM; Kikuchi N
    J Biomech; 1994 Apr; 27(4):433-44. PubMed ID: 8188724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models.
    van Rietbergen B; Weinans H; Huiskes R; Odgaard A
    J Biomech; 1995 Jan; 28(1):69-81. PubMed ID: 7852443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive evaluation of PCA-based finite element modelling of the human femur.
    Grassi L; Schileo E; Boichon C; Viceconti M; Taddei F
    Med Eng Phys; 2014 Oct; 36(10):1246-52. PubMed ID: 25128959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):353-60. PubMed ID: 1762430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer aided stress analysis of long bones utilizing computed tomography.
    Marom SA; Linden MJ
    J Biomech; 1990; 23(5):399-404. PubMed ID: 2373712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.