These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1435016)

  • 1. Modulation of potassium channels by organic molecules.
    Atwal KS
    Med Res Rev; 1992 Nov; 12(6):569-91. PubMed ID: 1435016
    [No Abstract]   [Full Text] [Related]  

  • 2. Gating mechanism of KATP channels: function fits form.
    Enkvetchakul D; Nichols CG
    J Gen Physiol; 2003 Nov; 122(5):471-80. PubMed ID: 14581579
    [No Abstract]   [Full Text] [Related]  

  • 3. An explanation for the reported observation that ATP dependent potassium channel openers fail to mimic preconditioning.
    Grover GJ
    Cardiovasc Res; 1993 Sep; 27(9):1564. PubMed ID: 8287431
    [No Abstract]   [Full Text] [Related]  

  • 4. Cysteine restores the activity of ATP-sensitive potassium channels of skeletal muscle fibers of aged rats.
    Tricarico D; Wagner R; Mallamaci R; Conte Camerino D
    Ann N Y Acad Sci; 1994 Jun; 717():244-52. PubMed ID: 8030841
    [No Abstract]   [Full Text] [Related]  

  • 5. G protein gated potassium channels.
    Sui JL; Chan K; Langan MN; Vivaudou M; Logothetis DE
    Adv Second Messenger Phosphoprotein Res; 1999; 33():179-201. PubMed ID: 10218119
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective ATP-sensitive potassium channel openers: fact or fiction.
    Gross GJ
    J Mol Cell Cardiol; 2003 Sep; 35(9):1005-7. PubMed ID: 12967620
    [No Abstract]   [Full Text] [Related]  

  • 7. Cytoplasmic unsaturated free fatty acids inhibit ATP-dependent gating of the G protein-gated K(+) channel.
    Kim D; Pleumsamran A
    J Gen Physiol; 2000 Mar; 115(3):287-304. PubMed ID: 10694258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ion channels of vascular smooth muscle and pharmacological effects of calcium antagonists and potassium channel openers].
    Kitamura K; Ogata R
    Fukuoka Igaku Zasshi; 1994 Nov; 85(11):309-13. PubMed ID: 7851831
    [No Abstract]   [Full Text] [Related]  

  • 9. Glibenclamide selectively blocks ATP-sensitive K+ channels reconstituted from skeletal muscle.
    Light PE; French RJ
    Eur J Pharmacol; 1994 Jul; 259(3):219-22. PubMed ID: 7982447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An explanation for the reported observation that ATP dependent potassium channel openers mimic preconditioning.
    Downey JM
    Cardiovasc Res; 1993 Sep; 27(9):1565. PubMed ID: 8287432
    [No Abstract]   [Full Text] [Related]  

  • 11. Opening of mitochondrial K(ATP) channels triggers cardioprotection. Are reactive oxygen species involved?
    Liu Y; O'Rourke B
    Circ Res; 2001 Apr; 88(8):750-2. PubMed ID: 11325864
    [No Abstract]   [Full Text] [Related]  

  • 12. A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels.
    Johnson JP; Balser JR; Bennett PB
    J Neurosci; 2001 Jun; 21(12):4143-53. PubMed ID: 11404399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: possible implications in cardioplegia.
    López JR; Jahangir R; Jahangir A; Shen WK; Terzic A
    J Thorac Cardiovasc Surg; 1996 Sep; 112(3):820-31. PubMed ID: 8800173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating mechanisms of ATP sensitive potassium channels: implication in reperfusion injury and preconditioning.
    Lee CY
    Cardiovasc Res; 1994 Jun; 28(6):729-34. PubMed ID: 7923271
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic variability and modulation of dSlo, a cloned calcium-dependent potassium channel.
    Bowlby MR; Levitan IB
    Neuropharmacology; 1996; 35(7):867-75. PubMed ID: 8938717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyunsaturated fatty acid modulation of voltage-gated ion channels.
    Boland LM; Drzewiecki MM
    Cell Biochem Biophys; 2008; 52(2):59-84. PubMed ID: 18830821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
    Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK
    Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ and Ca2+ channel blockers may enhance or depress sympathetic transmitter release via a Ca(2+)-dependent mechanism "upstream" of the release site.
    Stjärne L; Stjärne E; Msghina M; Bao JX
    Neuroscience; 1991; 44(3):673-92. PubMed ID: 1661385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of drugs and toxins with permeant ions in potassium, sodium, and calcium channels.
    Zhorov BS
    Ross Fiziol Zh Im I M Sechenova; 2011 Jul; 97(7):661-77. PubMed ID: 21961291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protecting endothelial function: A novel therapeutic target of ATP-sensitive potassium channel openers.
    Minamino T; Hori M
    Cardiovasc Res; 2007 Feb; 73(3):448-9. PubMed ID: 17188255
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.