These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 1435755)

  • 1. Mechanism of inhibition of aldose reductase by menadione (vitamin K3).
    Bhatnagar A; Liu SQ; Petrash JM; Srivastava SK
    Mol Pharmacol; 1992 Nov; 42(5):917-21. PubMed ID: 1435755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of sulfhydryl residues in aldose reductase-inhibitor interaction.
    Bhatnagar A; Liu S; Das B; Srivastava SK
    Mol Pharmacol; 1989 Dec; 36(6):825-30. PubMed ID: 2513474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human placenta aldose reductase. Forms sensitive and insensitive to inhibition by alrestatin.
    Maragoudakis ME; Wasvary J; Hankin H; Gargiulo P
    Mol Pharmacol; 1984 May; 25(3):425-30. PubMed ID: 6427599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized aldose reductase: in vivo factor not in vitro artifact.
    Grimshaw CE; Lai CJ
    Arch Biochem Biophys; 1996 Mar; 327(1):89-97. PubMed ID: 8615700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of aldose reductase by S-nitrosoglutathione.
    Chandra A; Srivastava S; Petrash JM; Bhatnagar A; Srivastava SK
    Biochemistry; 1997 Dec; 36(50):15801-9. PubMed ID: 9398310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site modification of aldose reductase by nitric oxide donors.
    Chandra A; Srivastava S; Petrash JM; Bhatnagar A; Srivastava SK
    Biochim Biophys Acta; 1997 Sep; 1341(2):217-22. PubMed ID: 9357961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional cysteinyl residues in human placental aldose reductase.
    Liu SQ; Bhatnagar A; Das B; Srivastava SK
    Arch Biochem Biophys; 1989 Nov; 275(1):112-21. PubMed ID: 2510598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase.
    Tiedge M; Richter T; Lenzen S
    Arch Biochem Biophys; 2000 Mar; 375(2):251-60. PubMed ID: 10700381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase.
    Nakano T; Petrash JM
    Biochemistry; 1996 Aug; 35(34):11196-202. PubMed ID: 8780524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione dependent modification of bovine lens aldose reductase.
    Cappiello M; Voltarelli M; Giannessi M; Cecconi I; Camici G; Manao G; Del Corso A; Mura U
    Exp Eye Res; 1994 Apr; 58(4):491-501. PubMed ID: 7925685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II.
    Bhatnagar A; Das B; Gavva SR; Cook PF; Srivastava SK
    Arch Biochem Biophys; 1988 Mar; 261(2):264-74. PubMed ID: 3128169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303.
    Petrash JM; Harter TM; Devine CS; Olins PO; Bhatnagar A; Liu S; Srivastava SK
    J Biol Chem; 1992 Dec; 267(34):24833-40. PubMed ID: 1332968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional consequences of haloenol lactone inactivation of murine and human glutathione S-transferase.
    Mitchell AE; Zheng J; Hammock BD; Lo Bello M; Jones AD
    Biochemistry; 1998 May; 37(19):6752-9. PubMed ID: 9578559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Sopher C; Kim IS; Lee H
    Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of cytotoxicity of menadione sodium bisulfite versus leukemia L1210 by the acid-soluble thiol pool.
    Akman SA; Dietrich M; Chlebowski R; Limberg P; Block JB
    Cancer Res; 1985 Nov; 45(11 Pt 1):5257-62. PubMed ID: 2996758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies of morphine dehydrogenase and stabilization against covalent inactivation.
    Walker EH; French CE; Rathbone DA; Bruce NC
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):687-92. PubMed ID: 10642529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.