BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 1436435)

  • 1. Prehension movements directed to approaching objects: influence of stimulus velocity on the transport and the grasp components.
    Chieffi S; Fogassi L; Gallese V; Gentilucci M
    Neuropsychologia; 1992 Oct; 30(10):877-97. PubMed ID: 1436435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination between the transport and the grasp components during prehension movements.
    Chieffi S; Gentilucci M
    Exp Brain Res; 1993; 94(3):471-7. PubMed ID: 8359261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation.
    Gentilucci M; Chieffi S; Scarpa M; Castiello U
    Behav Brain Res; 1992 Mar; 47(1):71-82. PubMed ID: 1571102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects.
    Gentilucci M; Toni I; Chieffi S; Pavesi G
    Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor control when reaching toward and grasping moving targets.
    Carnahan H; McFadyen BJ
    Acta Psychol (Amst); 1996 Jun; 92(1):17-32. PubMed ID: 8693952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the type of prehension influence the kinematics of reaching?
    Castiello U; Bennett KM; Paulignan Y
    Behav Brain Res; 1992 Sep; 50(1-2):7-15. PubMed ID: 1449650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target viewing time and velocity effects on prehension.
    Mason AH; Carnahan H
    Exp Brain Res; 1999 Jul; 127(1):83-94. PubMed ID: 10424417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position.
    Paulignan Y; MacKenzie C; Marteniuk R; Jeannerod M
    Exp Brain Res; 1991; 83(3):502-12. PubMed ID: 2026193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grip reorganization during wrist transport: the influence of an altered aperture.
    Saling M; Mescheriakov S; Molokanova E; Stelmach GE; Berger M
    Exp Brain Res; 1996 Mar; 108(3):493-500. PubMed ID: 8801129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prehension with trunk assisted reaching.
    Saling M; Stelmach GE; Mescheriakov S; Berger M
    Behav Brain Res; 1996 Oct; 80(1-2):153-60. PubMed ID: 8905138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated control of hand transport and orientation during prehension movements.
    Desmurget M; Prablanc C; Arzi M; Rossetti Y; Paulignan Y; Urquizar C
    Exp Brain Res; 1996 Jul; 110(2):265-78. PubMed ID: 8836690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of object position and size on human prehension movements.
    Paulignan Y; Frak VG; Toni I; Jeannerod M
    Exp Brain Res; 1997 Apr; 114(2):226-34. PubMed ID: 9166912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements.
    Rand MK; Squire LM; Stelmach GE
    Exp Brain Res; 2006 Sep; 174(1):74-85. PubMed ID: 16565810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconscious updating of grasp motor program.
    Gentilucci M; Daprati E; Toni I; Chieffi S; Saetti MC
    Exp Brain Res; 1995; 105(2):291-303. PubMed ID: 7498382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of prehension between 5 and 10 years of age: distance scaling, grip aperture, and sight of the hand.
    Smyth MM; Katamba J; Peacock KA
    J Mot Behav; 2004 Mar; 36(1):91-103. PubMed ID: 14766492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.