These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1436478)

  • 1. A model for the generation of movements requiring endpoint precision.
    Milner TE
    Neuroscience; 1992 Jul; 49(2):487-96. PubMed ID: 1436478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of submovements in movements of elderly adults.
    Fradet L; Lee G; Dounskaia N
    J Neuroeng Rehabil; 2008 Nov; 5():28. PubMed ID: 19014548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of accuracy constraints on three-dimensional movement kinematics.
    Milner TE; Ijaz MM
    Neuroscience; 1990; 35(2):365-74. PubMed ID: 2381512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of biomechanical factors on substructure of pointing movements.
    Dounskaia N; Wisleder D; Johnson T
    Exp Brain Res; 2005 Aug; 164(4):505-16. PubMed ID: 15856206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manual interception of moving targets. II. On-line control of overlapping submovements.
    Lee D; Port NL; Georgopoulos AP
    Exp Brain Res; 1997 Oct; 116(3):421-33. PubMed ID: 9372291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    J Neurophysiol; 2024 Aug; 132(2):433-445. PubMed ID: 38985937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements.
    Todorov E; Jordan MI
    J Neurophysiol; 1998 Aug; 80(2):696-714. PubMed ID: 9705462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of different submovement types during pointing to a target.
    Wisleder D; Dounskaia N
    Exp Brain Res; 2007 Jan; 176(1):132-49. PubMed ID: 16826410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of speeds and force fields on submovements during circular manual tracking in humans.
    Pasalar S; Roitman AV; Ebner TJ
    Exp Brain Res; 2005 May; 163(2):214-25. PubMed ID: 15668793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of motor performance that drive adaptation in rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2003 Feb; 148(3):388-400. PubMed ID: 12541149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The type 1 submovement conundrum: an investigation into the function of velocity zero-crossings within two-component aiming movements.
    Roberts JW; Burkitt JJ; Elliott D
    Exp Brain Res; 2024 Apr; 242(4):921-935. PubMed ID: 38329516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic properties of rapid hand movements in a knob turning task.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2000 Jun; 132(4):419-33. PubMed ID: 10912823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciding when and how to correct a movement: discrete submovements as a decision making process.
    Fishbach A; Roy SA; Bastianen C; Miller LE; Houk JC
    Exp Brain Res; 2007 Feb; 177(1):45-63. PubMed ID: 16944111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the minimum-jerk and minimum torque-change principles at the path, trajectory, and movement-cost levels.
    Klein Breteler MD; Meulenbroek RG; Gielen SC
    Motor Control; 2002 Jan; 6(1):69-83. PubMed ID: 11890147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Submovement changes characterize generalization of motor recovery after stroke.
    Dipietro L; Krebs HI; Fasoli SE; Volpe BT; Hogan N
    Cortex; 2009 Mar; 45(3):318-24. PubMed ID: 18640668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task.
    Roitman AV; Massaquoi SG; Takahashi K; Ebner TJ
    J Neurophysiol; 2004 Feb; 91(2):901-11. PubMed ID: 14561685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal dynamics of online motor correction processing revealed by high-density electroencephalography.
    Dipietro L; Poizner H; Krebs HI
    J Cogn Neurosci; 2014 Sep; 26(9):1966-80. PubMed ID: 24564462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submovements grow larger, fewer, and more blended during stroke recovery.
    Rohrer B; Fasoli S; Krebs HI; Volpe B; Frontera WR; Stein J; Hogan N
    Motor Control; 2004 Oct; 8(4):472-83. PubMed ID: 15585902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.