These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 1436636)
21. Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. Chung KK; Freestone PS; Lipski J J Neurophysiol; 2011 Dec; 106(6):2865-75. PubMed ID: 21900507 [TBL] [Abstract][Full Text] [Related]
22. Dopamine and GABA receptors in cultured substantia nigra neurons: correlation of electrophysiology and immunocytochemistry. Kim KM; Nakajima S; Nakajima Y Neuroscience; 1997 Jun; 78(3):759-69. PubMed ID: 9153656 [TBL] [Abstract][Full Text] [Related]
23. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Bowery B; Rothwell LA; Seabrook GR Br J Pharmacol; 1994 Jul; 112(3):873-80. PubMed ID: 7921615 [TBL] [Abstract][Full Text] [Related]
24. Guanosine diphosphate is required for activation of a glyburide, ATP and cromakalim-sensitive outward current in rat hippocampal neurones. Erdemli G; Krnjević K Neuroreport; 1994 Jun; 5(11):1362-4. PubMed ID: 7919200 [TBL] [Abstract][Full Text] [Related]
25. Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta. Guyon A; Laurent S; Paupardin-Tritsch D; Rossier J; Eugène D J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):719-37. PubMed ID: 10200421 [TBL] [Abstract][Full Text] [Related]
26. An ATP-sensitive K(+) conductance in dissociated neurones from adult rat intracardiac ganglia. Hogg RC; Adams DJ J Physiol; 2001 Aug; 534(Pt 3):713-20. PubMed ID: 11483702 [TBL] [Abstract][Full Text] [Related]
27. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. Lacey MG; Mercuri NB; North RA J Physiol; 1988 Jul; 401():437-53. PubMed ID: 2459376 [TBL] [Abstract][Full Text] [Related]
28. The antitussive effect of cromakalim in rats is not associated with adenosine triphosphate sensitive K+ channels. Kamei J; Iwamoto Y; Narita M; Suzuki T; Misawa M; Kasuya Y Res Commun Chem Pathol Pharmacol; 1993 May; 80(2):201-10. PubMed ID: 8391711 [TBL] [Abstract][Full Text] [Related]
29. Antidiabetic sulphonylureas stimulate acetylcholine release from striatal cholinergic interneurones through inhibition of K(ATP) channel activity. Lee K; Brownhill V; Richardson PJ J Neurochem; 1997 Oct; 69(4):1774-6. PubMed ID: 9326309 [TBL] [Abstract][Full Text] [Related]
30. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. Avshalumov MV; Chen BT; Koós T; Tepper JM; Rice ME J Neurosci; 2005 Apr; 25(17):4222-31. PubMed ID: 15858048 [TBL] [Abstract][Full Text] [Related]
31. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
32. Tolbutamide reverses membrane hyperpolarisation induced by activation of D2 receptors and GABAB receptors in isolated substantia nigra neurones. Roeper J; Hainsworth AH; Ashcroft FM Pflugers Arch; 1990 Jun; 416(4):473-5. PubMed ID: 2169045 [TBL] [Abstract][Full Text] [Related]
33. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Sturgess NC; Kozlowski RZ; Carrington CA; Hales CN; Ashford ML Br J Pharmacol; 1988 Sep; 95(1):83-94. PubMed ID: 3146398 [TBL] [Abstract][Full Text] [Related]
34. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes. Teramoto N; McMurray G; Brading AF Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697 [TBL] [Abstract][Full Text] [Related]
35. The potassium channel opener cromakalim (BRL 34915) activates ATP-dependent K+ channels in isolated cardiac myocytes. Escande D; Thuringer D; Leguern S; Cavero I Biochem Biophys Res Commun; 1988 Jul; 154(2):620-5. PubMed ID: 2456760 [TBL] [Abstract][Full Text] [Related]
36. Pre-synaptic effect of the ATP-sensitive potassium channel opener diazoxide on rat substantia nigra pars reticulata neurons. Ye GL; Leung CK; Yung WH Brain Res; 1997 Apr; 753(1):1-7. PubMed ID: 9125425 [TBL] [Abstract][Full Text] [Related]
37. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227). Noack T; Edwards G; Deitmer P; Weston AH Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843 [TBL] [Abstract][Full Text] [Related]
38. Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. Murphy KP; Greenfield SA J Physiol; 1992; 453():167-83. PubMed ID: 1464828 [TBL] [Abstract][Full Text] [Related]
39. Identification of an ATP-sensitive potassium channel current in rat striatal cholinergic interneurones. Lee K; Dixon AK; Freeman TC; Richardson PJ J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):441-53. PubMed ID: 9705995 [TBL] [Abstract][Full Text] [Related]
40. Action of cromakalim on potassium membrane conductance in isolated heart myocytes of frog. Pilsudski R; Rougier O; Tourneur Y Br J Pharmacol; 1990 Jul; 100(3):581-7. PubMed ID: 2117982 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]