These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1436708)

  • 1. Glutathione prevents 2,4,5-trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form.
    Aizenman E; Boeckman FA; Rosenberg PA
    Neurosci Lett; 1992 Sep; 144(1-2):233-6. PubMed ID: 1436708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2,4,5-trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin.
    Rosenberg PA; Loring R; Xie Y; Zaleskas V; Aizenman E
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4865-9. PubMed ID: 1675790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic conversion of 3,4-dihydroxyphenylalanine to 2,4,5-trihydroxyphenylalanine and 2,4,5-trihydroxyphenylalanine quinone in physiological solutions.
    Newcomer TA; Palmer AM; Rosenberg PA; Aizenman E
    J Neurochem; 1993 Sep; 61(3):911-20. PubMed ID: 8360690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TOPA quinone, a kainate-like agonist and excitotoxin is generated by a catecholaminergic cell line.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurosci; 1995 Apr; 15(4):3172-7. PubMed ID: 7722654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of 2,4,5-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GM1: implications for Parkinson's disease.
    Skaper SD; Facci L; Schiavo N; Vantini G; Moroni F; Dal Toso R; Leon A
    J Pharmacol Exp Ther; 1992 Dec; 263(3):1440-6. PubMed ID: 1361575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin.
    Newcomer TA; Rosenberg PA; Aizenman E
    J Neurochem; 1995 Apr; 64(4):1742-8. PubMed ID: 7891103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons.
    Aizenman E; White WF; Loring RH; Rosenberg PA
    Neurosci Lett; 1990 Aug; 116(1-2):168-71. PubMed ID: 1979663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine.
    Nappi AJ; Vass E
    Biochim Biophys Acta; 1994 Dec; 1201(3):498-504. PubMed ID: 7803483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro.
    Tang LH; Aizenman E
    J Physiol; 1993 Jun; 465():303-23. PubMed ID: 7693919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semisynthetic glycosphingolipid (LIGA20) reduces 2,4, 5-trihydroxyphenylalanine neurotoxicity in primary neuronal cultures.
    Skaper SD; Fadda E; Facci L; Manev H
    Eur J Pharmacol; 1993 Oct; 243(1):91-3. PubMed ID: 8253129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of CGS-19755 on the redox enhancement of NMDA toxicity in rat cortical neurons in vitro.
    Aizenman E; Hartnett KA
    Brain Res; 1992 Jul; 585(1-2):28-34. PubMed ID: 1511311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione.
    Sucher NJ; Lipton SA
    J Neurosci Res; 1991 Nov; 30(3):582-91. PubMed ID: 1666131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue.
    Matsuzaki R; Fukui T; Sato H; Ozaki Y; Tanizawa K
    FEBS Lett; 1994 Sep; 351(3):360-4. PubMed ID: 8082796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-derived neurotrophic factor selectively rescues mesencephalic dopaminergic neurons from 2,4,5-trihydroxyphenylalanine-induced injury.
    Skaper SD; Negro A; Facci L; Dal Toso R
    J Neurosci Res; 1993 Mar; 34(4):478-87. PubMed ID: 8097267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The other Topa: formation of 3,4,5-trihydroxyphenylalanine in peptides.
    Burzio LA; Waite JH
    Anal Biochem; 2002 Jul; 306(1):108-14. PubMed ID: 12069421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies on the mechanism of the topa quinone generation in bacterial monoamine oxidase.
    Matsuzaki R; Suzuki S; Yamaguchi K; Fukui T; Tanizawa K
    Biochemistry; 1995 Apr; 34(14):4524-30. PubMed ID: 7718554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of topa quinone cofactor.
    Kano K; Mori T; Uno B; Goto M; Ikeda T
    Biochim Biophys Acta; 1993 Jul; 1157(3):324-31. PubMed ID: 8391846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of N-methyl-D-aspartate receptor-mediated calcium entry into dissociated neurons by reduced and oxidized glutathione.
    Leslie SW; Brown LM; Trent RD; Lee YH; Morris JL; Jones TW; Randall PK; Lau SS; Monks TJ
    Mol Pharmacol; 1992 Feb; 41(2):308-14. PubMed ID: 1347146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular reduced glutathione increases neuronal vulnerability to combined chemical hypoxia and glucose deprivation.
    Regan RF; Guo Y
    Brain Res; 1999 Jan; 817(1-2):145-50. PubMed ID: 9889354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Redox Biology of Excitotoxic Processes: The NMDA Receptor, TOPA Quinone, and the Oxidative Liberation of Intracellular Zinc.
    Aizenman E; Loring RH; Reynolds IJ; Rosenberg PA
    Front Neurosci; 2020; 14():778. PubMed ID: 32792905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.