These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1437183)

  • 1. Effect of asymmetric vocal fold stiffness on traveling wave velocity in the canine larynx.
    Sloan SH; Berke GS; Gerratt BR
    Otolaryngol Head Neck Surg; 1992 Oct; 107(4):516-26. PubMed ID: 1437183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of vocal fold mucosal wave velocity in an in vivo canine model.
    Sloan SH; Berke GS; Gerratt BR; Kreiman J; Ye M
    Laryngoscope; 1993 Sep; 103(9):947-53. PubMed ID: 8361313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Videostroboscopy of human vocal fold paralysis.
    Sercarz JA; Berke GS; Ming Y; Gerratt BR; Natividad M
    Ann Otol Rhinol Laryngol; 1992 Jul; 101(7):567-77. PubMed ID: 1626902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis.
    Heaton JT; Kobler JB; Otten DM; Hillman RE; Zeitels SM
    Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):53S-70S. PubMed ID: 30843434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Videostroboscopy of the canine larynx: the effects of asymmetric laryngeal tension.
    Moore DM; Berke GS; Hanson DG; Ward PH
    Laryngoscope; 1987 May; 97(5):543-53. PubMed ID: 3573899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional analysis of vocal fold vibration in unilaterally atrophied larynges.
    Kobayashi J; Yumoto E; Hyodo M; Gyo K
    Laryngoscope; 2000 Mar; 110(3 Pt 1):440-6. PubMed ID: 10718435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laryngeal modeling: theoretical, in vitro, in vivo.
    Berke GS; Moore DM; Hantke DR; Hanson DG; Gerratt BR; Burstein F
    Laryngoscope; 1987 Jul; 97(7 Pt 1):871-81. PubMed ID: 3600140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pressure-regulated model of normal and pathologic phonation.
    Nasri S; Namazie A; Kreiman J; Sercarz JA; Gerratt BR; Berke GS
    Otolaryngol Head Neck Surg; 1994 Dec; 111(6):807-15. PubMed ID: 7991263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis and comparison of flow fields in normal larynx and larynx with unilateral vocal fold paralysis.
    Bagheri Sarvestani A; Goshtasbi Rad E; Iravani K
    Comput Methods Biomech Biomed Engin; 2018 Jun; 21(8):532-540. PubMed ID: 30024283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Mehta DD; Hillman RE; Zeitels SM
    Laryngoscope; 2020 Aug; 130(8):1980-1988. PubMed ID: 31603575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Young's modulus in the in vivo human vocal folds.
    Tran QT; Berke GS; Gerratt BR; Kreiman J
    Ann Otol Rhinol Laryngol; 1993 Aug; 102(8 Pt 1):584-91. PubMed ID: 8352480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glottal configuration in unilaterally paralyzed larynx and vocal function.
    Yumoto E; Sanuki T; Minoda R; Kumai Y; Nishimoto K
    Acta Otolaryngol; 2013 Feb; 133(2):187-93. PubMed ID: 23145918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.