These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1438043)

  • 1. Sensory irritation effects of methyl ethyl ketone and its receptor activation mechanism.
    Hansen LF; Knudsen A; Nielsen GD
    Pharmacol Toxicol; 1992 Sep; 71(3 Pt 1):201-8. PubMed ID: 1438043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory irritation effects of n-propanol and ethylbenzene after pretreatment with capsaicin or indomethacin.
    Hansen LF; Nielsen GD
    Pharmacol Toxicol; 1994; 75(3-4):154-61. PubMed ID: 7800656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory irritation and pulmonary irritation of cumene and n-propanol: mechanisms of receptor activation and desensitization.
    Kristiansen U; Hansen L; Nielsen GD; Holst E
    Acta Pharmacol Toxicol (Copenh); 1986 Jul; 59(1):60-72. PubMed ID: 3766152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory irritation and pulmonary irritation of n-methyl ketones: receptor activation mechanisms and relationships with threshold limit values.
    Hansen LF; Nielsen GD
    Arch Toxicol; 1994; 68(3):193-202. PubMed ID: 8024467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of n-butanol vapour on respiratory rate and tidal volume.
    Kristiansen U; Vinggaard AM; Nielsen GD
    Arch Toxicol; 1988 Jan; 61(3):229-36. PubMed ID: 3355368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory irritating effects of allyl halides and a role for hydrogen bonding as a likely feature at the receptor site.
    Nielsen GD; Bakbo JC
    Acta Pharmacol Toxicol (Copenh); 1985 Aug; 57(2):106-16. PubMed ID: 4061087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irritation of the upper airways from mixtures of cumene and n-propanol. Mechanisms and their consequences for setting industrial exposure limits.
    Nielsen GD; Kristiansen U; Hansen L; Alarie Y
    Arch Toxicol; 1988; 62(2-3):209-15. PubMed ID: 3196155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory irritation and pulmonary irritation by airborne allyl acetate, allyl alcohol, and allyl ether compared to acrolein.
    Nielsen GD; Bakbo JC; Holst E
    Acta Pharmacol Toxicol (Copenh); 1984 Apr; 54(4):292-8. PubMed ID: 6730984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach.
    Nielsen GD; Wolkoff P
    Regul Toxicol Pharmacol; 2017 Nov; 90():308-317. PubMed ID: 28911939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propyl ether. I. Interaction with the sensory irritant receptor.
    Nielsen GD; Olsen J; Bakbo JC; Holst E
    Acta Pharmacol Toxicol (Copenh); 1985 Feb; 56(2):158-64. PubMed ID: 3993384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicology and carcinogenesis studies of methyl trans-styryl ketone (CAS NO 1896-62-4) in F344/N rats and B6C3F1 mice (feed and dermal studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2012 May; (572):1-188. PubMed ID: 22692228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-dependent suppression of toluene metabolism by isopropyl alcohol and methyl ethyl ketone after experimental exposure of rats.
    Uaki H; Kawai T; Mizunuma K; Moon CS; Zhang ZW; Inui S; Takada S; Ikeda M
    Toxicol Lett; 1995 Nov; 81(2-3):229-34. PubMed ID: 8553379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory irritation and pulmonary irritation of C3-C7 n-alkylamines: mechanisms of receptor activation.
    Nielsen GD; Vinggaard AM
    Pharmacol Toxicol; 1988 Oct; 63(4):293-304. PubMed ID: 3194350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory irritation mechanisms investigated from model compounds: trifluoroethanol, hexafluoroisopropanol and methyl hexafluoroisopropyl ether.
    Nielsen GD; Abraham MH; Hansen LF; Hammer M; Cooksey CJ; Andonian-Haftvan J; Alarie Y
    Arch Toxicol; 1996; 70(6):319-28. PubMed ID: 8975630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants.
    Lehmann R; Schöbel N; Hatt H; van Thriel C
    Arch Toxicol; 2016 Jun; 90(6):1399-413. PubMed ID: 27037703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of sensory irritating and neurobehavioural properties of aliphatic ketones in mice.
    De Ceaurriz J; Micillino JC; Marignac B; Bonnet P; Muller J; Guenier JP
    Food Chem Toxicol; 1984 Jul; 22(7):545-9. PubMed ID: 6540229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of sensory irritation from some common industrial solvents.
    Kane LE; Dombroske R; Alarie Y
    Am Ind Hyg Assoc J; 1980 Jun; 41(6):451-5. PubMed ID: 7395760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propyl ether. II. Pulmonary irritation and anaesthesia.
    Nielsen GD; Olsen J; Bakbo JC; Holst E
    Acta Pharmacol Toxicol (Copenh); 1985 Feb; 56(2):165-75. PubMed ID: 3993385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual analogue scales: How can we interpret them in experimental studies of irritation in the eyes, nose, throat and airways?
    Ernstgård L; Bottai M
    J Appl Toxicol; 2012 Oct; 32(10):777-82. PubMed ID: 21469166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of acute inhalation effects of (+) and (-)-alpha-pinene in BALB/c mice.
    Nielsen GD; Larsen ST; Hougaard KS; Hammer M; Wolkoff P; Clausen PA; Wilkins CK; Alarie Y
    Basic Clin Pharmacol Toxicol; 2005 Jun; 96(6):420-8. PubMed ID: 15910405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.