These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 1438173)
1. Mutagenic dissection of hemoglobin cooperativity: effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers. Turner GJ; Galacteros F; Doyle ML; Hedlund B; Pettigrew DW; Turner BW; Smith FR; Moo-Penn W; Rucknagel DL; Ackers GK Proteins; 1992 Nov; 14(3):333-50. PubMed ID: 1438173 [TBL] [Abstract][Full Text] [Related]
2. Single-site modifications of half-ligated hemoglobin reveal autonomous dimer cooperativity within a quaternary T tetramer. LiCata VJ; Dalessio PM; Ackers GK Proteins; 1993 Nov; 17(3):279-96. PubMed ID: 8272426 [TBL] [Abstract][Full Text] [Related]
3. A novel low oxygen affinity recombinant hemoglobin (alpha96val--> Trp): switching quaternary structure without changing the ligation state. Kim HW; Shen TJ; Sun DP; Ho NT; Madrid M; Ho C J Mol Biol; 1995 May; 248(4):867-82. PubMed ID: 7752247 [TBL] [Abstract][Full Text] [Related]
4. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process. Tsai CH; Shen TJ; Ho NT; Ho C Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550 [TBL] [Abstract][Full Text] [Related]
5. Asymmetric distribution of cooperativity in the binding cascade of normal human hemoglobin. 1. Cooperative and noncooperative oxygen binding in Zn-substituted hemoglobin. Holt JM; Klinger AL; Yarian CS; Keelara V; Ackers GK Biochemistry; 2005 Sep; 44(36):11925-38. PubMed ID: 16142891 [TBL] [Abstract][Full Text] [Related]
6. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin. Kim HW; Shen TJ; Ho NT; Zou M; Tam MF; Ho C Biochemistry; 1996 May; 35(21):6620-7. PubMed ID: 8639610 [TBL] [Abstract][Full Text] [Related]
7. Hydropathic analysis of the non-covalent interactions between molecular subunits of structurally characterized hemoglobins. Abraham DJ; Kellogg GE; Holt JM; Ackers GK J Mol Biol; 1997 Oct; 272(4):613-32. PubMed ID: 9325116 [TBL] [Abstract][Full Text] [Related]
8. Computationally accessible method for estimating free energy changes resulting from site-specific mutations of biomolecules: systematic model building and structural/hydropathic analysis of deoxy and oxy hemoglobins. Burnett JC; Botti P; Abraham DJ; Kellogg GE Proteins; 2001 Feb; 42(3):355-77. PubMed ID: 11151007 [TBL] [Abstract][Full Text] [Related]
9. Regulation of oxygen affinity by quaternary enhancement: does hemoglobin Ypsilanti represent an allosteric intermediate? Doyle ML; Lew G; Turner GJ; Rucknagel D; Ackers GK Proteins; 1992 Nov; 14(3):351-62. PubMed ID: 1438174 [TBL] [Abstract][Full Text] [Related]
10. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers. Baudin V; Pagnier J; Kiger L; Kister J; Schaad O; Bihoreau MT; Lacaze N; Marden MC; Edelstein SJ; Poyart C Protein Sci; 1993 Aug; 2(8):1320-30. PubMed ID: 8401217 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. Liang Y; Hua Z; Liang X; Xu Q; Lu G J Mol Biol; 2001 Oct; 313(1):123-37. PubMed ID: 11601851 [TBL] [Abstract][Full Text] [Related]
13. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin. Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154 [TBL] [Abstract][Full Text] [Related]
14. Transformation of cooperative free energies between ligation systems of hemoglobin: resolution of the carbon monoxide binding intermediates. Huang Y; Ackers GK Biochemistry; 1996 Jan; 35(3):704-18. PubMed ID: 8547251 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic evidence for a new ensemble of ligand-induced allosteric transitions in hemoglobin: the T-to-T(high) quaternary transitions. Kavanaugh JS; Rogers PH; Arnone A Biochemistry; 2005 Apr; 44(16):6101-21. PubMed ID: 15835899 [TBL] [Abstract][Full Text] [Related]
16. Oxygen equilibrium and EPR studies on alpha1beta1 hemoglobin dimer. Venkatesh B; Miyazaki G; Imai K; Morimoto H; Hori H J Biochem; 2004 Nov; 136(5):595-600. PubMed ID: 15632298 [TBL] [Abstract][Full Text] [Related]
17. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Peterson ES; Friedman JM Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755 [TBL] [Abstract][Full Text] [Related]
18. Conformational change and cooperative ligand binding in hemoglobin. Otsuka J; Kunisawa T Adv Biophys; 1978; 11():53-92. PubMed ID: 27956 [TBL] [Abstract][Full Text] [Related]
19. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function. Ackers GK; Dalessio PM; Lew GH; Daugherty MA; Holt JM Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9777-82. PubMed ID: 12119405 [TBL] [Abstract][Full Text] [Related]
20. Positive and negative cooperativities at subsequent steps of oxygenation regulate the allosteric behavior of multistate sebacylhemoglobin. Bucci E; Razynska A; Kwansa H; Gryczynski Z; Collins JH; Fronticelli C; Unger R; Braxenthaler M; Moult J; Ji X; Gilliland G Biochemistry; 1996 Mar; 35(11):3418-25. PubMed ID: 8639491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]