These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 143822)

  • 21. Characterization of the metabolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11.
    Chakraborty J; Das S
    Chemosphere; 2016 Feb; 144():1706-14. PubMed ID: 26519802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation.
    Prabhu Y; Phale PS
    Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway.
    Merino E; Barrientos A; Rodríguez J; Naharro G; Luengo JM; Olivera ER
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):891-904. PubMed ID: 22406861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial metabolism of 4-chlorophenoxyacetate.
    Evans WC; Smith BS; Moss P; Fernley HN
    Biochem J; 1971 May; 122(4):509-17. PubMed ID: 5123884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new bacterial dehydrogenase oxidizing the lignin model compound guaiacylglycerol beta-O-4-guaiacyl ether.
    Pelmont J; Barrelle M; Hauteville M; Gamba D; Romdhane M; Dardas A; Beguin C
    Biochimie; 1985 Sep; 67(9):973-86. PubMed ID: 3841290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol.
    Vogt C; Simon D; Alfreider A; Babel W
    Environ Toxicol Chem; 2004 Feb; 23(2):265-70. PubMed ID: 14982371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymology of the degradation of (di)chlorobenzenes by Xanthobacter flavus 14p1.
    Sommer C; Görisch H
    Arch Microbiol; 1997 Jun; 167(6):384-91. PubMed ID: 9148781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of 4-chloroaniline by bacteria enriched from soil.
    Vangnai AS; Petchkroh W
    FEMS Microbiol Lett; 2007 Mar; 268(2):209-16. PubMed ID: 17328747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini.
    Schnell S; Bak F; Pfennig N
    Arch Microbiol; 1989; 152(6):556-63. PubMed ID: 2589921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of quinoline by a soil bacterium.
    Grant DJ; Al-Najjar TR
    Microbios; 1976; 15(61-62):177-89. PubMed ID: 1012043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete degradation of dimethyl phthalate by a Comamonas testosterone strain.
    Li J; Luo F; Chu D; Xuan H; Dai X
    J Basic Microbiol; 2017 Nov; 57(11):941-949. PubMed ID: 28833312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of oral methoxy-psoralen photochemotherapy (PUVA) on liver function and antipyrin kinetics.
    Chretien P; Galmiche JP; Payenneville JM; Fouin-Fortunet H; Lauret P; Boismare F; Colin R
    Int J Clin Pharmacol Res; 1983; 3(5):343-7. PubMed ID: 6678827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerobic degradation of di- and trichlorobenzenes by two bacteria isolated from polluted tropical soils.
    Adebusoye SA; Picardal FW; Ilori MO; Amund OO; Fuqua C; Grindle N
    Chemosphere; 2007 Jan; 66(10):1939-46. PubMed ID: 16962633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of isoproturon-degrading bacteria from treated soil via three different routes.
    Roberts SJ; Walker A; Cox L; Welch SJ
    J Appl Microbiol; 1998 Aug; 85(2):309-16. PubMed ID: 9750305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing.
    El Khawand M; Crombie AT; Johnston A; Vavlline DV; McAuliffe JC; Latone JA; Primak YA; Lee SK; Whited GM; McGenity TJ; Murrell JC
    Environ Microbiol; 2016 Sep; 18(8):2743-53. PubMed ID: 27102583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Metabolism of antipyrine in man].
    Pautet F; Barret R; Daudon M; Mathian B
    Pathol Biol (Paris); 1985 Sep; 33(7):777-80. PubMed ID: 3909077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tandem enzyme-catalysed oxidations of alkyl phenyl sulfides and alkyl benzenes: enantiocomplementary routes to chiral phenols.
    Boyd DR; Sharma ND; Ljubez V; Byrne BE; Shepherd SD; Allen CC; Kulakov LA; Larkin MJ; Dalton H
    Chem Commun (Camb); 2002 Sep; (17):1914-5. PubMed ID: 12271672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbofuran-degrading bacteria from previously treated field soils.
    Parekh NR; Suett DL; Roberts SJ; McKeown T; Shaw ED; Jukes AA
    J Appl Bacteriol; 1994 Jun; 76(6):559-67. PubMed ID: 8027005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
    Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F
    Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures.
    Weissenfels WD; Beyer M; Klein J
    Appl Microbiol Biotechnol; 1990 Jan; 32(4):479-84. PubMed ID: 1366395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.