BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1438561)

  • 1. The dielectric parameters of excised EMT-6 tumours and their change during hyperthermia.
    McRae DA; Esrick MA
    Phys Med Biol; 1992 Nov; 37(11):2045-58. PubMed ID: 1438561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvolved electrical impedance spectra track distinct cell morphology changes.
    McRae DA; Esrick MA
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):607-18. PubMed ID: 8987265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive, in-vivo electrical impedance of EMT-6 tumours during hyperthermia: correlation with morphology and tumour-growth-delay.
    McRae DA; Esrick MA; Mueller SC
    Int J Hyperthermia; 1997; 13(1):1-20. PubMed ID: 9024923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in electrical impedance of skeletal muscle measured during hyperthermia.
    McRae DA; Esrick MA
    Int J Hyperthermia; 1993; 9(2):247-61. PubMed ID: 8468508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the effect of mild hyperthermia on tumour hypoxia by Cu-ATSM PET scanning.
    Myerson RJ; Singh AK; Bigott HM; Cha B; Engelbach JA; Kim J; Lamoreaux WT; Moros E; Novak P; Sharp TL; Straube W; Welch MJ; Xu M
    Int J Hyperthermia; 2006 Mar; 22(2):93-115. PubMed ID: 16754595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the noninvasive, in vivo electrical impedance of three xenografts during the necrotic cell-response sequence.
    McRae DA; Esrick MA; Mueller SC
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):849-57. PubMed ID: 10098441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping.
    Esrick MA; McRae DA
    Phys Med Biol; 1994 Jan; 39(1):133-44. PubMed ID: 7651992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic scaling in the dielectric response of excised EMT-6 tumours undergoing hyperthermia.
    Dissado LA; Alison JM; Hill RM; McRae DA; Esrick MA
    Phys Med Biol; 1995 Jun; 40(6):1067-84. PubMed ID: 7659731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo.
    Jordan A; Scholz R; Wust P; Fähling H; Krause J; Wlodarczyk W; Sander B; Vogl T; Felix R
    Int J Hyperthermia; 1997; 13(6):587-605. PubMed ID: 9421741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequencing of combined hyperthermia and photodynamic therapy.
    Chen Q; Chen H; Shapiro H; Hetzel FW
    Radiat Res; 1996 Sep; 146(3):293-7. PubMed ID: 8752307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of D,L- and D-tetraplatin with hyperthermia in vitro and in vivo.
    Epelbaum R; Teicher BA; Holden SA; Ara G; Varshney A; Herman TS
    Eur J Cancer; 1992; 28A(4-5):794-800. PubMed ID: 1524897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumour-specific enhancement of thermoradiotherapy at mild temperatures by the vascular targeting agent 5,6-dimethylxanthenone-4-acetic acid.
    Murata R; Horsman MR
    Int J Hyperthermia; 2004 Jun; 20(4):393-404. PubMed ID: 15204520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy.
    Pop M; Molckovsky A; Chin L; Kolios MC; Jewett MA; Sherar MD
    Phys Med Biol; 2003 Aug; 48(15):2509-25. PubMed ID: 12953912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental studies on thermotolerance in hyperthermia treatment of cancer].
    Yoshihara T
    Nihon Geka Gakkai Zasshi; 1987 Jun; 88(6):663-74. PubMed ID: 3627091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations in pO2 and pH response to hyperthermia: dependence on transplant site and duration of treatment.
    Hetzel FW; Chopp M; Dereski MO
    Radiat Res; 1992 Aug; 131(2):152-6. PubMed ID: 1641469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumour response to mild hyperthermia and thermoradiosensitization.
    Hokland SL; Horsman MR
    Int J Hyperthermia; 2007 Nov; 23(7):599-606. PubMed ID: 18038290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty in hyperthermia treatment planning: the need for robust system design.
    de Greef M; Kok HP; Correia D; Borsboom PP; Bel A; Crezee J
    Phys Med Biol; 2011 Jun; 56(11):3233-50. PubMed ID: 21540493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antitumour effectiveness of hyperthermia is potentiated by local application of electric pulses to LPB tumours in mice.
    Karner KB; Lesnicar H; Cemazar M; Sersa G
    Anticancer Res; 2004; 24(4):2343-8. PubMed ID: 15330182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumour thermotolerance, a physiological phenomenon involving vessel normalisation.
    Dings RP; Loren ML; Zhang Y; Mikkelson S; Mayo KH; Corry P; Griffin RJ
    Int J Hyperthermia; 2011; 27(1):42-52. PubMed ID: 21204622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor cure and cell survival after localized radiofrequency heating.
    Marmor JB; Hahn N; Hahn GM
    Cancer Res; 1977 Mar; 37(3):879-83. PubMed ID: 837383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.