These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 143919)
1. Fructose metabolism in four Pseudomonas species. Van Dijken JP; Quayle JR Arch Microbiol; 1977 Sep; 114(3):281-6. PubMed ID: 143919 [TBL] [Abstract][Full Text] [Related]
2. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Baumann P; Baumann L Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561 [TBL] [Abstract][Full Text] [Related]
3. Pathways of D-fructose catabolism in species of Pseudomonas. Sawyer MH; Baumann P; Baumann L; Berman SM; Cánovas JL; Berman RH Arch Microbiol; 1977 Feb; 112(1):49-55. PubMed ID: 139135 [TBL] [Abstract][Full Text] [Related]
4. Fructose transport in Bacillus subtilis. Gay P; Delobbe A Eur J Biochem; 1977 Oct; 79(2):363-73. PubMed ID: 200418 [TBL] [Abstract][Full Text] [Related]
5. Enzymes of D-fructose catabolism in species of Beneckea and Photobacterium. Gee DL; Baumann P; Baumann L Arch Microbiol; 1975 Apr; 103(2):205-7. PubMed ID: 125566 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase. Delobbe A; Chalumeau H; Claverie JM; Gay P Eur J Biochem; 1976 Jul; 66(3):485-91. PubMed ID: 821752 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of D-fructose by Arthrobacter pyridinolis. Sobel ME; Krulwich TA J Bacteriol; 1973 Feb; 113(2):907-13. PubMed ID: 4347929 [TBL] [Abstract][Full Text] [Related]
8. Distribution of 1-phosphofructokinase and PEP:fructose phosphotransferase activity in Clostridia. von Hugo H; Gottschalk G FEBS Lett; 1974 Sep; 46(1):106-8. PubMed ID: 4278943 [No Abstract] [Full Text] [Related]
9. Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens. Lynch WH; MacLeod J; Franklin M Can J Microbiol; 1975 Oct; 21(10):1560-72. PubMed ID: 172202 [TBL] [Abstract][Full Text] [Related]
10. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Conrad R; Schlegel HG Arch Microbiol; 1977 Feb; 112(1):39-48. PubMed ID: 139134 [TBL] [Abstract][Full Text] [Related]
11. Existence of two alternative pathways for fructose and sorbitol metabolism in Bacillus subtilis Marburg. Delobbe A; Chalumeau H; Gay P Eur J Biochem; 1975 Feb; 51(2):503-10. PubMed ID: 168069 [TBL] [Abstract][Full Text] [Related]
12. Glucose and fructose metabolism in Zymomonas anaerobia. McGill DJ; Dawes EA Biochem J; 1971 Dec; 125(4):1059-68. PubMed ID: 4259336 [TBL] [Abstract][Full Text] [Related]
13. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase. Pickl A; Johnsen U; Schönheit P J Bacteriol; 2012 Jun; 194(12):3088-97. PubMed ID: 22493022 [TBL] [Abstract][Full Text] [Related]
14. Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies. Phibbs PV; McCowen SM; Feary TW; Blevins WT J Bacteriol; 1978 Feb; 133(2):717-28. PubMed ID: 146701 [TBL] [Abstract][Full Text] [Related]
15. Activities of regulatory enzymes in alkane-utilizing and lipid-accumulating yeasts and moulds. Whitworth DA; Ratledge C J Gen Microbiol; 1975 Sep; 90(1):183-6. PubMed ID: 240911 [No Abstract] [Full Text] [Related]
16. Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon. Daniels GA; Drews G; Saier MH J Bacteriol; 1988 Apr; 170(4):1698-703. PubMed ID: 2832374 [TBL] [Abstract][Full Text] [Related]
17. Glycolysis at the climacteric of bananas. Ball KL; Green JH; ap Rees T Eur J Biochem; 1991 Apr; 197(1):265-9. PubMed ID: 1849821 [TBL] [Abstract][Full Text] [Related]
18. Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens. Maleki S; Hrudikova R; Zotchev SB; Ertesvåg H Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27836849 [TBL] [Abstract][Full Text] [Related]
19. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis. Sawyer MH; Baumann P; Baumann L Arch Microbiol; 1977 Mar; 112(2):169-72. PubMed ID: 139858 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Lee HJ; Choi MH; Kim TU; Yoon SC Appl Environ Microbiol; 2001 Nov; 67(11):4963-74. PubMed ID: 11679314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]