These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 1439329)

  • 1. In vivo and in vitro study of the lesions produced with a computerized radiofrequency system.
    Vinas FC; Zamorano L; Dujovny M; Zhao JZ; Hodgkinson D; Ho KL; Ausman JI
    Stereotact Funct Neurosurg; 1992; 58(1-4):121-33. PubMed ID: 1439329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental radiofrequency (RF) coagulation with computer-based on line monitoring of temperature and power.
    Moringlane JR; Koch R; Schäfer H; Ostertag CB
    Acta Neurochir (Wien); 1989; 96(3-4):126-31. PubMed ID: 2711897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of radiofrequency lesions in egg whites in vitro produced by application of the Tew electrode for different temperatures and times.
    Kwon YS; Lim SY; Kim JH; Jang JS; Kim CH; Kwon KJ; Yon JH
    Pain Res Manag; 2015; 20(6):316-20. PubMed ID: 26357684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evaluation of brain lesioning electrodes (Leksell) using a computer-assisted video system.
    Eriksson O; Wårdell K; Bylund NE; Kullberg G; Rehncrona S
    Neurol Res; 1999 Jan; 21(1):89-95. PubMed ID: 10048063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that affect radiofrequency heat lesion size.
    Cosman ER; Dolensky JR; Hoffman RA
    Pain Med; 2014 Dec; 15(12):2020-36. PubMed ID: 25312825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental radiofrequency brain lesions: a volumetric study.
    Eriksson O; Backlund EO; Lundberg P; Lindstam H; Lindström S; Wårdell K
    Neurosurgery; 2002 Sep; 51(3):781-7; discussion 787-8. PubMed ID: 12188958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioablation settings affecting the size of lesions created ex vivo in porcine livers with monopolar perfusion electrodes.
    Luo RG; Gao F; Gu YK; Huang JH; Li CL
    Acad Radiol; 2010 Aug; 17(8):980-4. PubMed ID: 20599156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced radiofrequency ablation of canine prostate utilizing a liquid conductor: the virtual electrode.
    Leveillee RJ; Hoey MF; Hulbert JC; Mulier P; Lee D; Jesserun J
    J Endourol; 1996 Feb; 10(1):5-11. PubMed ID: 8833722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereo-electro-encephalography-Guided Radiofrequency Thermocoagulation: From In Vitro and In Vivo Data to Technical Guidelines.
    Bourdillon P; Isnard J; Catenoix H; Montavont A; Rheims S; Ryvlin P; Ostrowsky-Coste K; Mauguiere F; Guénot M
    World Neurosurg; 2016 Oct; 94():73-79. PubMed ID: 27373418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental radiofrequency ablation in porcine liver ex vivo with "wet" unipolar electrode].
    Gu YK; Huang JH; Luo RG; Gao F; Fan WJ; Zhang L
    Zhonghua Yi Xue Za Zhi; 2009 Oct; 89(39):2802-5. PubMed ID: 20137609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of pulsed radiofrequency and continuous radiofrequency on thermocoagulation of egg white in vitro.
    Heavner JE; Boswell MV; Racz GB
    Pain Physician; 2006 Apr; 9(2):135-7. PubMed ID: 16703974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramural radiofrequency ablation: effects of electrode temperature and length.
    Kovoor P; Daly M; Campbell C; Dewsnap B; Eipper V; Uther J; Ross D
    Pacing Clin Electrophysiol; 2004 Jun; 27(6 Pt 1):719-25. PubMed ID: 15189525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficacy of a two needle electrode technique in percutaneous radiofrequency rhizotomy:An investigational laboratory study in an animal model.
    Derby R; Lee CH
    Pain Physician; 2006 Jul; 9(3):207-13. PubMed ID: 16886029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.
    Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R
    Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental temperature control of radiofrequency brain lesion size.
    Pecson RD; Roth DA; Mark VH
    J Neurosurg; 1969 Jun; 30(6):703-7. PubMed ID: 4892161
    [No Abstract]   [Full Text] [Related]  

  • 16. Bipolar radiofrequency lesion geometry: implications for palisade treatment of sacroiliac joint pain.
    Cosman ER; Gonzalez CD
    Pain Pract; 2011; 11(1):3-22. PubMed ID: 20602716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiofrequency catheter ablation of Type 1 atrial flutter using a large-tip electrode catheter and high-power radiofrequency energy generator.
    Feld GK
    Expert Rev Med Devices; 2004 Nov; 1(2):187-92. PubMed ID: 16293039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo experiment of saline-enhanced hepatic bipolar radiofrequency ablation with a perfused needle electrode: comparison with conventional monopolar and simultaneous monopolar modes.
    Lee JM; Kim SH; Han JK; Sohn KL; Choi BI
    Cardiovasc Intervent Radiol; 2005; 28(3):338-45. PubMed ID: 15789259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings.
    Solazzo SA; Ahmed M; Liu Z; Hines-Peralta AU; Goldberg SN
    Radiology; 2007 Mar; 242(3):743-50. PubMed ID: 17244719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radio frequency ablation in the rabbit lung using wet electrodes: comparison of monopolar and dual bipolar electrode mode.
    Jin GY; Park SH; Han YM; Chung GH; Kwak HS; Jeon Sb; Lee YC
    Korean J Radiol; 2006; 7(2):97-105. PubMed ID: 16799270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.