BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1440710)

  • 1. Fructose-1,6-bisphosphate stabilizes brain intracellular calcium during hypoxia in rats.
    Bickler PE; Kelleher JA
    Stroke; 1992 Nov; 23(11):1617-22. PubMed ID: 1440710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fructose-1,6-bisphosphate preserves adenosine triphosphate but not intracellular pH during hypoxia in respiring neonatal rat brain slices.
    Espanol MT; Litt L; Hasegawa K; Chang LH; Macdonald JM; Gregory G; James TL; Chan PH
    Anesthesiology; 1998 Feb; 88(2):461-72. PubMed ID: 9477067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia.
    Bickler PE; Gallego SM; Hansen BM
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):811-9. PubMed ID: 8103057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotection and intracellular Ca2+ modulation with fructose-1,6-bisphosphate during in vitro hypoxia-ischemia involves phospholipase C-dependent signaling.
    Donohoe PH; Fahlman CS; Bickler PE; Vexler ZS; Gregory GA
    Brain Res; 2001 Nov; 917(2):158-66. PubMed ID: 11640901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH.
    Bickler PE
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1298-302. PubMed ID: 1481942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism in hypoxic astrocytes: protective mechanism of fructose-1,6-bisphosphate.
    Kelleher JA; Chan PH; Chan TY; Gregory GA
    Neurochem Res; 1995 Jul; 20(7):785-92. PubMed ID: 7477671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation.
    Izumi Y; Benz AM; Katsuki H; Matsukawa M; Clifford DB; Zorumski CF
    Neuroscience; 2003; 116(2):465-75. PubMed ID: 12559101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells.
    Eisner DA; Nichols CG; O'Neill SC; Smith GL; Valdeolmillos M
    J Physiol; 1989 Apr; 411():393-418. PubMed ID: 2614727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in rat aortic endothelial free calcium mediated by metabolically sensitive calcium release from endoplasmic reticulum.
    Ziegelstein RC; Cheng L; Aversano T; Ouyang P; Lakatta EG; Silverman HS
    Cardiovasc Res; 1994 Sep; 28(9):1433-9. PubMed ID: 7954656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fructose-1,6-bisphosphate on glutamate release and ATP loss from rat brain slices during hypoxia.
    Bickler PE; Buck LT
    J Neurochem; 1996 Oct; 67(4):1463-8. PubMed ID: 8858928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH on calcium influx during hypoxia in rat cortical brain slices.
    O'Donnell BR; Bickler PE
    Stroke; 1994 Jan; 25(1):171-7. PubMed ID: 8266367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructose-1,6-bisphosphate and fructose-2,6-bisphosphate do not influence brain carbohydrate or high-energy phosphate metabolism in a rat model of forebrain ischemia.
    Hofer RE; Wagner SR; Pasternak JJ; Albrecht RF; Gallagher WJ; Lanier WL
    J Neurosurg Anesthesiol; 2009 Jan; 21(1):31-9. PubMed ID: 19098621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose protects rat hepatocytes from anoxic injury. Effect on intracellular ATP, Ca2+i, Mg2+i, Na+i, and pHi.
    Gasbarrini A; Borle AB; Farghali H; Francavilla A; Van Thiel D
    J Biol Chem; 1992 Apr; 267(11):7545-52. PubMed ID: 1559992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of exogenously applied fructose 1,6-bisphosphate in hypoxic vascular smooth muscle.
    Hardin CD; Roberts TM
    Am J Physiol; 1994 Dec; 267(6 Pt 2):H2325-32. PubMed ID: 7810732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage.
    Bickler PE; Hansen BM
    Brain Res; 1994 Dec; 665(2):269-76. PubMed ID: 7534604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes.
    Gregory GA; Welsh FA; Yu AC; Chan PH
    Brain Res; 1990 May; 516(2):310-2. PubMed ID: 2364296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose-1,6-bisphosphate does not preserve ATP in hypoxic-ischemic neonatal cerebrocortical slices.
    Liu J; Hirai K; Litt L
    Brain Res; 2008 Oct; 1238():230-8. PubMed ID: 18725216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose 6-phosphate and fructose 1,6-bisphosphate can be used as ATP-regenerating systems by cerebellum Ca2+-transport ATPase.
    Ramos RC; de Meis L
    J Neurochem; 1999 Jan; 72(1):81-6. PubMed ID: 9886057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate efflux via the reversal of the sodium-dependent glutamate transporter caused by glycolytic inhibition in rat cultured astrocytes.
    Gemba T; Oshima T; Ninomiya M
    Neuroscience; 1994 Dec; 63(3):789-95. PubMed ID: 7898678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose-1,6-bisphosphate protects astrocytes from hypoxic damage.
    Gregory GA; Yu AC; Chan PH
    J Cereb Blood Flow Metab; 1989 Feb; 9(1):29-34. PubMed ID: 2910894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.