These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14407374)

  • 1. Electron microscopic observations on the three-dimensional morphology of apatite crystallites of human dentine and bone.
    JOHANSEN E; PARKS HF
    J Biophys Biochem Cytol; 1960 Jul; 7(4):743-6. PubMed ID: 14407374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of grinding of human dentine examined by X-ray diffraction, infrared spectroscopy, and electron microscopy.
    Dahm S; Furseth R
    Calcif Tissue Res; 1976 Oct; 21(2):115-20. PubMed ID: 791460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural study of apatite crystal dissolution in human dentine and bone.
    Voegel JC; Frank RM
    J Biol Buccale; 1977 Sep; 5(3):181-94. PubMed ID: 122693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study.
    Nelson DG; Wood GJ; Barry JC; Featherstone JD
    Ultramicroscopy; 1986; 19(3):253-65. PubMed ID: 3765183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-microscopic observations on sound human dentine.
    JOHANSEN E; PARKS HF
    Arch Oral Biol; 1962; 7():185-93. PubMed ID: 14451941
    [No Abstract]   [Full Text] [Related]  

  • 6. Electron microscope studies of dentine; the true nature of the dentinal canals.
    SHROFF FR; WILLIAMSON KI; BERTAUD WS
    Oral Surg Oral Med Oral Pathol; 1954 Jun; 7(6):662-7. PubMed ID: 13166228
    [No Abstract]   [Full Text] [Related]  

  • 7. Further electron microscope studies of dentine; the nature of the odontoblast process.
    SHROFF FR; WILLIAMSON KI; BERTAUD WS; HALL DM
    Oral Surg Oral Med Oral Pathol; 1956 Apr; 9(4):432-43. PubMed ID: 13309974
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium and phosphorus in the blood and skeleton of the Elasmobranchii.
    URIST MR
    Endocrinology; 1961 Oct; 69():778-801. PubMed ID: 13779323
    [No Abstract]   [Full Text] [Related]  

  • 9. Ultrastructural observations and growth of occluding crystals in carious dentine.
    Zavgorodniy AV; Rohanizadeh R; Bulcock S; Swain MV
    Acta Biomater; 2008 Sep; 4(5):1427-39. PubMed ID: 18501691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone crystallites as observed by use of the electron microscope.
    SPECKMAN TW; NORRIS WP
    Science; 1957 Oct; 126(3277):753. PubMed ID: 13467278
    [No Abstract]   [Full Text] [Related]  

  • 11. A contribution to the technique of the electron micros copy of dentine.
    SYRRIST A; GUSTAFSON G
    Odontol Tidskr; 1951; 59(6):500-13. PubMed ID: 14919990
    [No Abstract]   [Full Text] [Related]  

  • 12. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHEMISTRY, BIOCHEMISTRY, AND PHARMACOLOGY OF EDIBLE PHOSPHATES: FORMAL DISCUSSION.
    IRVING JT
    J Dent Res; 1964; 43():SUPPL:1117-8. PubMed ID: 14236889
    [No Abstract]   [Full Text] [Related]  

  • 14. Why does fluorosed dentine show a higher susceptibility for caries: an ultra-morphological explanation.
    Waidyasekera K; Nikaido T; Weerasinghe D; Watanabe A; Ichinose S; Tay F; Tagami J
    J Med Dent Sci; 2010 Mar; 57(1):17-23. PubMed ID: 20437762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inframicroscopic structure of normal compact bone by the electron microscope].
    FRANK R; FRANK P; KLEIN M; FONTAINE R
    C R Seances Soc Biol Fil; 1955 May; 149(9-10):1011-4. PubMed ID: 13270507
    [No Abstract]   [Full Text] [Related]  

  • 16. THE PROBLEM OF DEMINERALISATION IN THIN SECTIONS OF FULLY CALCIFIED BONE.
    BOOTHROYD B
    J Cell Biol; 1964 Jan; 20(1):165-73. PubMed ID: 14105207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution electron microscopic technique applied to the detection of distortions in apatite crystallites during amelogenesis.
    Voegel JC; Weiss MP; Frank RM
    J Biol Buccale; 1981 Jun; 9(2):183-91. PubMed ID: 6943143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation.
    Pekounov Y; Petrov OE
    J Mater Sci Mater Med; 2008 Feb; 19(2):753-9. PubMed ID: 17619976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The size and shape of the apatite crystallites in bone as determined from line-broadening measurements on oriented specimens.
    CARLSTROM D; GLAS JE
    Biochim Biophys Acta; 1959 Sep; 35():46-53. PubMed ID: 13807787
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of early hard tissue formation in dentine by energy dispersive X-ray microanalysis and energy-filtering transmission electron microscopy.
    Wiesmann HP; Plate U; Höhling HJ; Barckhaus RH; Zierold K
    Scanning Microsc; 1993 Jun; 7(2):711-8. PubMed ID: 8108683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.