These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14409328)

  • 21. The diaphorase and cytochrome C reductase activities of arterial tissue in individuals of various ages.
    KIRK JE
    J Gerontol; 1962 Jul; 17():276-80. PubMed ID: 14456296
    [No Abstract]   [Full Text] [Related]  

  • 22. Age-dependent changes of glyoxalase I expression in human brain.
    Kuhla B; Boeck K; Lüth HJ; Schmidt A; Weigle B; Schmitz M; Ogunlade V; Münch G; Arendt T
    Neurobiol Aging; 2006 Jun; 27(6):815-22. PubMed ID: 15950319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation with age in the fumarase activity of human aortic and pulmonary artery tissue.
    SORENSEN LB; KIRK JE
    J Gerontol; 1956 Jan; 11(1):28-32. PubMed ID: 13278512
    [No Abstract]   [Full Text] [Related]  

  • 24. Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction.
    Blackburn NJR; Vulesevic B; McNeill B; Cimenci CE; Ahmadi A; Gonzalez-Gomez M; Ostojic A; Zhong Z; Brownlee M; Beisswenger PJ; Milne RW; Suuronen EJ
    Basic Res Cardiol; 2017 Sep; 112(5):57. PubMed ID: 28864889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The adenylphyrophosphatase, inorganic pyrophosphatase, and phosphomonoesterase activities of human arterial tissue in individuals of various ages.
    KIRK JE
    J Gerontol; 1959 Apr; 14(2):181-8. PubMed ID: 13641644
    [No Abstract]   [Full Text] [Related]  

  • 26. The total glutathione content of arterial tissue in individuals of various ages.
    WANG I; KIRK JE
    J Gerontol; 1960 Jan; 15():35-7. PubMed ID: 13842795
    [No Abstract]   [Full Text] [Related]  

  • 27.
    Do MH; Hur J; Choi J; Kim Y; Park HY; Ha SK
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30223524
    [No Abstract]   [Full Text] [Related]  

  • 28. The cathepsin activity of arterial tissue in indivi-eduals of various ages.
    KIRK JE
    J Gerontol; 1962 Apr; 17():158-62. PubMed ID: 14456295
    [No Abstract]   [Full Text] [Related]  

  • 29. The glucose-6-phosphate and 6-phosphogluconate dehydrogenase activities of arterial tissue in individuals of various ages.
    KIRK JE; WANG I; BRANDSTRUP N
    J Gerontol; 1959 Jan; 14(1):25-31. PubMed ID: 13620900
    [No Abstract]   [Full Text] [Related]  

  • 30. Generation and characterization of mouse knockout for glyoxalase 1.
    Jang S; Kwon DM; Kwon K; Park C
    Biochem Biophys Res Commun; 2017 Aug; 490(2):460-465. PubMed ID: 28623132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains.
    Kuhla B; Boeck K; Schmidt A; Ogunlade V; Arendt T; Münch G; Lüth HJ
    Neurobiol Aging; 2007 Jan; 28(1):29-41. PubMed ID: 16427160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insight into glycation levels and pelvic organ prolapse - A combination of clinical and biochemical studies.
    Weli H; Cooper J; Yang Y
    Eur J Obstet Gynecol Reprod Biol; 2018 Dec; 231():129-135. PubMed ID: 30368090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevention of dicarbonyl-mediated advanced glycation by glyoxalases: implication in skin aging.
    Radjei S; Friguet B; Nizard C; Petropoulos I
    Biochem Soc Trans; 2014 Apr; 42(2):518-22. PubMed ID: 24646271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy.
    Thornalley PJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1372-7. PubMed ID: 14641066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RAGE and glyoxalase in kidney disease.
    Inagi R
    Glycoconj J; 2016 Aug; 33(4):619-26. PubMed ID: 27270765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The isocitric dehydrogenase and TPN-malic enzyme activities of arterial tissue in individuals of various ages.
    KIRK JE
    J Gerontol; 1960 Jul; 15():262-6. PubMed ID: 14409329
    [No Abstract]   [Full Text] [Related]  

  • 37. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.
    Shinohara M; Thornalley PJ; Giardino I; Beisswenger P; Thorpe SR; Onorato J; Brownlee M
    J Clin Invest; 1998 Mar; 101(5):1142-7. PubMed ID: 9486985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments.
    Rabbani N; Xue M; Thornalley PJ
    Clin Sci (Lond); 2016 Oct; 130(19):1677-96. PubMed ID: 27555612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose.
    Liu YW; Cheng YQ; Liu XL; Hao YC; Li Y; Zhu X; Zhang F; Yin XX
    Mol Neurobiol; 2017 Aug; 54(6):4060-4070. PubMed ID: 27318675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum.
    Wezena CA; Urscher M; Vince R; More SS; Deponte M
    Redox Biol; 2016 Aug; 8():348-53. PubMed ID: 26972115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.