These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 1440968)

  • 1. [Redox processes in the retina and tunic tissues of the rat eye in experimental alkalosis].
    Soldatova AM; Pakhomova VA; Kriukova GN; Stogniĭ NA
    Ukr Biokhim Zh (1978); 1992; 64(3):62-7. PubMed ID: 1440968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal tissue metabolism in the rat during chronic metabolic alkalosis: importance of glycolysis.
    Lemieux G; Berkofsky J; Lemieux C
    Can J Physiol Pharmacol; 1986 Nov; 64(11):1419-26. PubMed ID: 2947666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in liver enzyme activity in alloxan diabetes rats].
    Cheshchevik AB
    Vopr Med Khim; 1982; 28(2):66-70. PubMed ID: 7080480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Level and correlation of metabolites of NAD(P)+-dependent dehydrogenase systems in newborn calf tissues in acute diarrhea].
    Zakharenko MO
    Ukr Biokhim Zh (1978); 1992; 64(2):39-44. PubMed ID: 1413116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of carbonic acid of different concentrations of the glycolysis processes and tricarboxylic acid cycle in rat liver tissues].
    Lutsenko NI; Mel'nichuk DA; Zhuravskiĭ NI
    Ukr Biokhim Zh (1978); 1978; 50(5):635-40. PubMed ID: 726098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates.
    Puntel RL; Roos DH; Grotto D; Garcia SC; Nogueira CW; Rocha JB
    Life Sci; 2007 Jun; 81(1):51-62. PubMed ID: 17532009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain.
    Morland C; Henjum S; Iversen EG; Skrede KK; Hassel B
    Neurochem Int; 2007 Apr; 50(5):703-9. PubMed ID: 17316901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy.
    Van den Enden MK; Nyengaard JR; Ostrow E; Burgan JH; Williamson JR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1675-85. PubMed ID: 7601647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energy metabolism in newborn calves].
    Liubets'ka TV; Lushchyk AA; Mel'nychuk DO; Kuz'menko IV
    Ukr Biokhim Zh (1978); 1993; 65(3):80-4. PubMed ID: 8291146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolic characteristics of the myocardium and muscle tissue of the thigh in rats].
    Mardashko AA; Makul'kin RF; Popik GS
    Fiziol Zh (1978); 1989; 35(3):21-6. PubMed ID: 2737322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes in the levels of glycolysis and tricarboxylic acid cycle metabolites in cat tissues during periodontosis].
    Pakhomova VA; Kriukova GN; Pakhomova OO
    Ukr Biokhim Zh (1978); 1985; 57(1):70-3. PubMed ID: 3976017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of renal tricarboxylic acid cycle metabolism to various acid-base states: study with [3-13C,5-15N]glutamine.
    Nissim I; Nissim I; Yudkoff M
    Miner Electrolyte Metab; 1991; 17(1):21-31. PubMed ID: 1770913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system.
    Di Simplicio P; Cacace MG; Lusini L; Giannerini F; Giustarini D; Rossi R
    Arch Biochem Biophys; 1998 Jul; 355(2):145-52. PubMed ID: 9675020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Glycolysis in the eye tissues of the rabbit in ontogeny. I. The enzymes of glycolysis and hexosemonophosphate shunt].
    Faustov VS
    Ontogenez; 1977; 8(4):361-9. PubMed ID: 143640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of changes in iron redox state on the activity of enzymes sensitive to modification of SH groups.
    Korge P; Campbell KB
    Arch Biochem Biophys; 1993 Aug; 304(2):420-8. PubMed ID: 8346918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.