These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14411059)

  • 41. [Study of the role of oxidation of a dicarboxylic acid in the regulation of oxidation of faty acids].
    HAREL L; MENDOZA E
    C R Hebd Seances Acad Sci; 1960 Jun; 250():3894-6. PubMed ID: 14399787
    [No Abstract]   [Full Text] [Related]  

  • 42. The metabolism of nitrilotriacetate by a pseudomonad.
    Cripps RE; Noble AS
    Biochem J; 1973 Dec; 136(4):1059-68. PubMed ID: 4362331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Glycogen formation from four-carbon-atom dicarboxylic acids].
    KUTSCHER W; SCHIPPERS M
    Hoppe Seylers Z Physiol Chem; 1950; 286(1):59-67. PubMed ID: 14803059
    [No Abstract]   [Full Text] [Related]  

  • 44. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats.
    Mortensen PB
    Biochim Biophys Acta; 1992 Feb; 1124(1):71-9. PubMed ID: 1543729
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on the metabolism of the acid-fast bacteria. II. Indications of intermediate pathways of acetate oxidation.
    McLAREN LC; JANN GJ
    Am Rev Tuberc; 1955 Feb; 71(2):266-71. PubMed ID: 14350185
    [No Abstract]   [Full Text] [Related]  

  • 46. [Presence of 2 systems for the oxidation of acetaldehyde into acetic acid in Acetobacter xylinum].
    PRIEUR P
    C R Hebd Seances Acad Sci; 1960 Feb; 250():1733-5. PubMed ID: 14434886
    [No Abstract]   [Full Text] [Related]  

  • 47. A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids.
    van Roermund CW; Ijlst L; Wagemans T; Wanders RJ; Waterham HR
    Biochim Biophys Acta; 2014 Apr; 1841(4):563-8. PubMed ID: 24333844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on the metabolism of mammary tissue in vitro. 1. Oxidation of acetate and glucose by slices of lactating rat mammary gland.
    DUNCOMBE WG; GLASCOCK RF
    Biochem J; 1956 Jun; 63(2):326-32. PubMed ID: 13328829
    [No Abstract]   [Full Text] [Related]  

  • 49. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage.
    Gamar Y; Gaunt JK
    Biochem J; 1971 May; 122(4):527-31. PubMed ID: 5123886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB; Gregersen N
    Biochim Biophys Acta; 1981 Dec; 666(3):394-404. PubMed ID: 6798996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids.
    Werner N; Dreyer M; Wagner W; Papon N; Rupp S; Zibek S
    Biotechnol Lett; 2017 Mar; 39(3):429-438. PubMed ID: 27904981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Observations on the oxidation of glucose and acetate by lactating sheep mammary tissue in vitro.
    DUNCOMBE WG; GLASCOCK RF
    Biochem J; 1953 Jul; 55(320th Meeting):xxiii-xxiv. PubMed ID: 13093709
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies on the metabolism of mammary tissue in vitro. 2. Oxidation of acetate and glucose by slices of lactating sheep mammary gland.
    DUNCOMBE WG; GLASCOCK RF
    Biochem J; 1956 Jun; 63(2):332-6. PubMed ID: 13328830
    [No Abstract]   [Full Text] [Related]  

  • 54. Cyanide-insensitive and clofibrate enhanced beta-oxidation of dodecanedioic acid in rat liver. An indication of peroxisomal beta-oxidation of N-dicarboxylic acids.
    Mortensen PB; Kølvraa S; Gregersen N; Rasmussen K
    Biochim Biophys Acta; 1982 Nov; 713(2):393-7. PubMed ID: 7150619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative decarboxylation of glycollate and glyoxylate by leaf peroxisomes.
    Halliwell B; Leek AE; Butt VS
    Biochem J; 1972 Jul; 128(3):87P-88P. PubMed ID: 4634852
    [No Abstract]   [Full Text] [Related]  

  • 56. The pathways of acetate oxidation.
    BARRON ES; GHIRETTI F
    Biochim Biophys Acta; 1953; 12(1-2):239-49. PubMed ID: 13115433
    [No Abstract]   [Full Text] [Related]  

  • 57. Effect of cancer and fasting on oxidation of labeled acetate, glucose and glycine to C1402.
    HARMON DH; KIRK MR; TOLBERT BM
    Am J Physiol; 1959 Feb; 196(2):265-8. PubMed ID: 13627157
    [No Abstract]   [Full Text] [Related]  

  • 58. Movements of radioactive carbon dioxide within the animal body during oxidation of 14C-labelled substances.
    COXON RV; ROBINSON RJ
    J Physiol; 1959 Oct; 147(3):487-510. PubMed ID: 13812528
    [No Abstract]   [Full Text] [Related]  

  • 59. The pathway of oxidation of acetate in baker's yeast.
    KERBS HA; GURIN S; EGGLESTON LV
    Biochem J; 1952 Aug; 51(5):614-28. PubMed ID: 13018136
    [No Abstract]   [Full Text] [Related]  

  • 60. The localization of glycollate-pathway enzymes in Euglena.
    Collins N; Merrett MJ
    Biochem J; 1975 May; 148(2):321-8. PubMed ID: 1156408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.