These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 144119)

  • 1. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Changes in the distribution of exposed lysine residues among subfragments with change in enzymatic state.
    Yamamoto T; Tonomura Y
    J Biochem; 1977 Sep; 82(3):653-60. PubMed ID: 144119
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Tonomura Y
    J Biochem; 1973 Dec; 74(6):1091-6. PubMed ID: 4273602
    [No Abstract]   [Full Text] [Related]  

  • 3. Characteristics of sarcoplasmic reticulum from normal and denervated rat skeletal muscle.
    Palexas GN; Savage N; Isaacs H
    Biochem J; 1981 Oct; 200(1):11-5. PubMed ID: 6120692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of skeletal muscle sarcotubular Ca2+-stimulated adenosine triphosphatase activity by various agents.
    Tomlinson CW; Bernatsky AM; Dhalla NS
    Biochem Pharmacol; 1976 Oct; 25(20):2271-4. PubMed ID: 10924
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of potassium, procaine and dantrolene on the calcium-dependent and "basal" ATPase activities of sarcoplasmic reticulum of skeletal muscle.
    Green RA; Heffron JJ; Mitchell G
    Gen Pharmacol; 1976 Oct; 7(5):361-3. PubMed ID: 135708
    [No Abstract]   [Full Text] [Related]  

  • 6. Cholesterol in sarcoplasmic reticulum and the physiological significance of membrane fluidity.
    Johannsson A; Keightley CA; Smith GA; Metcalfe JC
    Biochem J; 1981 May; 196(2):505-11. PubMed ID: 6459086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle.
    Viner RI; Ferrington DA; Williams TD; Bigelow DJ; Schöneich C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):657-69. PubMed ID: 10359649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation of highly active preparations of sarcoplasmic reticulum and Ca2-dependent ATPase from cardiac muscle].
    Levitskiĭ DO; Aliev MK; Levchenko TS; Lipitskaia IIa; Smirnov VN
    Biokhimiia; 1976 May; 41(5):854-63. PubMed ID: 139943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active calcium treatment transport via coupling between the enzymatic and the ionophoric sites of Ca2+ + Mg2+-ATPase.
    Shamoo AE; Scott TL; Ryan TE
    J Supramol Struct; 1977; 6(3):345-53. PubMed ID: 145515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reactivation of a completely lipid-free preparation of Ca2+-dependent ATPase from sarcoplasmic reticulum].
    Mel'gunov VI; Akimova EI
    Dokl Akad Nauk SSSR; 1978; 238(6):1487-90. PubMed ID: 147166
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 13. Segmental motion and rotational diffusion of the Ca2+-translocating adenosine triphosphatase of sarcoplasmic reticulum, measured by time-resolved phosphorescence depolarization.
    Speirs A; Moore CH; Boxer DH; Garland PB
    Biochem J; 1983 Jul; 213(1):67-74. PubMed ID: 6137210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule.
    Thorley-Lawson DA; Green NM
    Biochem J; 1977 Dec; 167(3):739-48. PubMed ID: 146488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropic drive in the sarcoplasmic reticulum ATPase interaction with Mg2+ and Pi.
    Schwarz FP; Inesi G
    Biophys J; 1997 Oct; 73(4):2179-82. PubMed ID: 9336214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.
    Arruda AP; Da-Silva WS; Carvalho DP; De Meis L
    Biochem J; 2003 Nov; 375(Pt 3):753-60. PubMed ID: 12887329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase.
    Sumida M; Sasaki S
    J Biochem; 1975 Oct; 78(4):757-62. PubMed ID: 55412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of the Ca2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Use of 2, 4, 6-trinitrobenzenesulfonate to show functional movements of the ATPase molecule.
    Yamamoto T; Tonomura Y
    J Biochem; 1976 Apr; 79(4):693-707. PubMed ID: 132437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Participation of monoamine oxidase type B in regulation of sarcoplasmic reticulum Ca2+,Mg2+-dependent ATPase].
    Tat'iachenko LV; Raĭkhman LM; Verevkina IV; Vasiukova NV
    Vopr Med Khim; 1978; 24(4):548-50. PubMed ID: 150703
    [No Abstract]   [Full Text] [Related]  

  • 20. [Calcium transport and ATPase activity of sarcoplasmic reticulum in normal and denervated rabbit muscles].
    Lopina OD
    Biull Eksp Biol Med; 1976 May; 81(5):536-9. PubMed ID: 132975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.