BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14412146)

  • 21. [On the behavior of 32P- labeled insecticide organophosphoric compounds after intracisternal administration in cattle--a contribution on the resorption of biologically active substances from the udder of the cow--I. Trichlorphon].
    Schwarz H; Dedek W
    Arch Exp Veterinarmed; 1967; 21(4):1031-5. PubMed ID: 5598568
    [No Abstract]   [Full Text] [Related]  

  • 22. Milk fat synthesis from acetate in mammary gland of the cow.
    ROGERS TA; KLEIBER M
    Proc Soc Exp Biol Med; 1957 Apr; 94(4):705-8. PubMed ID: 13431928
    [No Abstract]   [Full Text] [Related]  

  • 23. Rumen-derived lipopolysaccharide enhances the expression of lingual antimicrobial peptide in mammary glands of dairy cows fed a high-concentrate diet.
    Jin D; Chang G; Zhang K; Guo J; Xu T; Shen X
    BMC Vet Res; 2016 Jun; 12(1):128. PubMed ID: 27350130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies of the synthesis of milk fat by the perfused, isolated bovine udder.
    COWIE AT; DUNCOMBE WG; FOLLEY SJ; FRENCH TH; GLASCOCK RF; MASSART L; PEETERS G; POPJAK G
    Biochem J; 1951 Mar; 48(3):xxxix-xl. PubMed ID: 14820882
    [No Abstract]   [Full Text] [Related]  

  • 25. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows.
    Zhang K; Chang G; Xu T; Xu L; Guo J; Jin D; Shen X
    Oncotarget; 2016 Mar; 7(9):9652-65. PubMed ID: 26893357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of milk removal or four-times-daily milking on mammary expression of genes involved in the insulin-like growth factor-I axis.
    Wall EH; McFadden TB
    J Dairy Sci; 2010 Sep; 93(9):4062-70. PubMed ID: 20723680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The interrelation between the secretory function of the bovine udder and the amount of prolactin receptors on the membranes of the milk fat globules during lactogenesis].
    Larina MM; Tumanova EB; Popova AA
    Fiziol Zh Im I M Sechenova; 1995 Jul; 81(7):93-8. PubMed ID: 8714383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters.
    Colman E; Fokkink WB; Craninx M; Newbold JR; De Baets B; Fievez V
    J Dairy Sci; 2010 Oct; 93(10):4759-73. PubMed ID: 20855010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a replacement method for mammary gland biopsies by comparing gene expression in udder tissue and mammary epithelial cells isolated from milk.
    Krappmann K; Weikard R; Kühn C
    Res Vet Sci; 2012 Oct; 93(2):970-4. PubMed ID: 22265217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of genetic parameters for individual udder quarter milk content traits in Brown Swiss cattle.
    Kramer M; Erbe M; Bapst B; Bieber A; Simianer H
    J Dairy Sci; 2013 Sep; 96(9):5965-76. PubMed ID: 23871376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epidemiology of metabolic disorders in dairy cattle: association among host characteristics, disease, and production.
    Gröhn YT; Erb HN; McCulloch CE; Saloniemi HS
    J Dairy Sci; 1989 Jul; 72(7):1876-85. PubMed ID: 2778171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The synthesis of amino acids by the perfused cow udder.
    VERBEKE R; PEETERS G
    Biochim Biophys Acta; 1960 Jan; 37():533-4. PubMed ID: 13841731
    [No Abstract]   [Full Text] [Related]  

  • 33. Polymorphisms in genes of the somatotrophic axis are independently associated with milk production, udder health, survival and animal size in Holstein-Friesian dairy cattle.
    Waters SM; Berry DP; Mullen MP
    J Anim Breed Genet; 2012 Feb; 129(1):70-8. PubMed ID: 22225586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Common metabolic diseases of cattle: ketosis, milk fever, grass tetany, and downer cow complex.
    Littledike ET; Young JW; Beitz DC
    J Dairy Sci; 1981 Jun; 64(6):1465-82. PubMed ID: 7024349
    [No Abstract]   [Full Text] [Related]  

  • 35. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells.
    Shen B; Zhang L; Lian C; Lu C; Zhang Y; Pan Q; Yang R; Zhao Z
    Int J Mol Sci; 2016 Feb; 17(2):200. PubMed ID: 26901190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis.
    McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C
    J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The incorporation of acetate-1-[14C] into the milk fatty acids of normal, fasting, and ketotic cows.
    THIN C; KLEIBER M; KRONFELD DS
    Am J Vet Res; 1962 May; 23():544-7. PubMed ID: 14039701
    [No Abstract]   [Full Text] [Related]  

  • 38. Surgical treatment of a mural teat abscess in a cow.
    Dreyfuss DJ; Madison JB; Reef VB
    J Am Vet Med Assoc; 1990 Dec; 197(12):1629-30. PubMed ID: 2276962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) on milk lipid synthesis in mammary glands of dairy cows.
    Yang Y; Lin Y; Duan X; Lv H; Xing W; Li Q; Gao X; Hou X
    J Dairy Sci; 2017 May; 100(5):4014-4024. PubMed ID: 28284693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elimination kinetics of tilmicosin following intramammary administration in lactating dairy cattle.
    Smith GW; Davis JL; Baynes RE; Yeatts JL; Barlow BM; Riviere JE
    J Am Vet Med Assoc; 2009 Jan; 234(2):245-8. PubMed ID: 19210246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.