These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14419548)

  • 1. Controlling the flue-fed incinerator.
    MACKNIGHT RJ; WILLIAMSON JE; SABLESKI JJ; DEALY JO
    J Air Pollut Control Assoc; 1960 Apr; 10():103-9. PubMed ID: 14419548
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of design and fuel moisture on incinerator effluents.
    STENBURG RL; HORSLEY RR; HERRICK RA; ROSE AH
    J Air Pollut Control Assoc; 1960 Apr; 10():114-20. PubMed ID: 13834293
    [No Abstract]   [Full Text] [Related]  

  • 3. Attitudes on the design of flue-fed incinerators.
    STERLING M
    J Air Pollut Control Assoc; 1960 Apr; 10():110-3. PubMed ID: 13834419
    [No Abstract]   [Full Text] [Related]  

  • 4. The new refuse incinerator of L. von Roll A.-G.
    TANNER R
    J Air Pollut Control Assoc; 1962 Jun; 12():285-90. PubMed ID: 13919578
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of refuse incinerator design by public agencies.
    ABPLANALP GH; STEPHENSON JW
    Am J Public Health Nations Health; 1960 Aug; 50(8):1155-62. PubMed ID: 13681075
    [No Abstract]   [Full Text] [Related]  

  • 6. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator.
    Zhong Z; Jin B; Huang Y; Zhou H; Lan J
    Waste Manag; 2006; 26(6):580-6. PubMed ID: 16054809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: effects of dynamic process control measures and emission reduction devices.
    Maguhn J; Karg E; Kettrup A; Zimmermann R
    Environ Sci Technol; 2003 Oct; 37(20):4761-70. PubMed ID: 14594389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A full-scale study on thermal degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash and its secondary air pollution control in China.
    Gao X; Ji B; Yan D; Huang Q; Zhu X
    Waste Manag Res; 2017 Apr; 35(4):437-443. PubMed ID: 27909210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste disposal without air pollution.
    COMPTON CR; BOWERMAN FR
    J Air Pollut Control Assoc; 1960 Feb; 10():57-9. PubMed ID: 13811434
    [No Abstract]   [Full Text] [Related]  

  • 10. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.
    Hajizadeh Y; Onwudili JA; Williams PT
    Waste Manag; 2011 Jun; 31(6):1194-201. PubMed ID: 21334872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of mercury emissions from a municipal solid waste incinerator in Japan.
    Takaoka M; Takeda N; Fujiwara T; Kurata M; Kimura T
    J Air Waste Manag Assoc; 2002 Aug; 52(8):931-40. PubMed ID: 12184692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases.
    Chi KH; Chang MB
    Environ Sci Technol; 2005 Oct; 39(20):8023-31. PubMed ID: 16295870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: mercury in waste incineration.
    van Veizen D; Langenkamp H; Herb G
    Waste Manag Res; 2002 Dec; 20(6):556-68. PubMed ID: 12549668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.
    Baun DL; Christensen TH; Bergfeldt B; Vehlow J; Mogensen EP
    Waste Manag Res; 2004 Feb; 22(1):58-68. PubMed ID: 15113115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of adhesive-coated paper for estimating incinerator particulate emissions.
    GRUBER CW; SCHUMANN CE
    J Air Pollut Control Assoc; 1962 Aug; 12():376-8. PubMed ID: 13902359
    [No Abstract]   [Full Text] [Related]  

  • 16. Catalytic NOx reduction with simultaneous dioxin and furan oxidation.
    Goemans M; Clarysse P; Joannès J; De Clercq P; Lenaerts S; Matthys K; Boels K
    Chemosphere; 2004 Mar; 54(9):1357-65. PubMed ID: 14659429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of electron beam for the reduction of PCDD/F emission from municipal solid waste incinerators.
    Hirota K; Hakoda T; Taguchi M; Takigami M; Kim H; Kojima T
    Environ Sci Technol; 2003 Jul; 37(14):3164-70. PubMed ID: 12901666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic NO(chi) reduction with simultaneous dioxin and furan oxidation.
    Goemans M; Clarysse P; Joannès J; De Clercq P; Lenaerts S; Matthys K; Boels K
    Chemosphere; 2003 Jan; 50(4):489-97. PubMed ID: 12685748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and temporal variation of metals in the vicinity of a municipal solid waste incinerator after a modernization of the flue gas cleaning systems of the facility.
    Llobet JM; Schuhmacher M; Domingo JL
    Sci Total Environ; 2002 Feb; 284(1-3):205-14. PubMed ID: 11846165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous control of metals and organics using a fluidized bed adsorber.
    Chiang BC; Wey MY; Yang WY; Lu CY
    Environ Technol; 2003 Sep; 24(9):1103-15. PubMed ID: 14599144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.