These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1443148)

  • 1. A new method for quantitating intracellular transport: application to the thyroid hormone 3,5,3'-triiodothyronine.
    Luxon BA; Weisiger RA
    Am J Physiol; 1992 Nov; 263(5 Pt 1):G733-41. PubMed ID: 1443148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules.
    Weisiger RA
    Hepatology; 1996 Nov; 24(5):1288-95. PubMed ID: 8903412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state model of 3,5,3'-triiodothyronine transport in liver predicts high cellular exchangeable hormone concentration relative to in vitro free hormone concentration.
    Pardridge WM; Landaw EM
    Endocrinology; 1987 Mar; 120(3):1059-68. PubMed ID: 3803309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in intracellular fatty acid transport: role of cytoplasmic binding proteins.
    Luxon BA; Weisiger RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):G831-41. PubMed ID: 8238512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in multiple steps in hepatic transport of palmitate support a balanced uptake mechanism.
    Luxon BA; Holly DC; Milliano MT; Weisiger RA
    Am J Physiol; 1998 Jan; 274(1):G52-61. PubMed ID: 9458773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the multiple indicator dilution method to include slow intracellular diffusion.
    Luxon BA; Weisiger RA
    Math Biosci; 1993 Feb; 113(2):211-30. PubMed ID: 8431651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic uptake of 3,5,3'-triiodothyronine: electrochemical driving forces.
    Weisiger RA; Luxon BA; Cavalieri RR
    Am J Physiol; 1992 Jun; 262(6 Pt 1):G1104-12. PubMed ID: 1616040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of 3,5,3'-triiodothyronine by the perfused rat liver: return to the free hormone hypothesis.
    Mendel CM; Weisiger RA; Cavalieri RR
    Endocrinology; 1988 Oct; 123(4):1817-24. PubMed ID: 3416816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular pharmacokinetics: effects of cytoplasmic diffusion and binding on organ transit time distribution.
    Weiss M
    J Pharmacokinet Biopharm; 1999 Jun; 27(3):233-56. PubMed ID: 10728488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecificity of triiodothyronine transport into brain, liver, and salivary gland: role of carrier- and plasma protein-mediated transport.
    Terasaki T; Pardridge WM
    Endocrinology; 1987 Sep; 121(3):1185-91. PubMed ID: 3622378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and use of a mathematical two-pool model of distribution and metabolism of 3,3',5-triiodothyronine in a recirculating rat liver perfusion system: albumin does not play a role in cellular transport.
    Docter R; de Jong M; van der Hoek HJ; Krenning EP; Hennemann G
    Endocrinology; 1990 Jan; 126(1):451-9. PubMed ID: 2293999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcellular and transnuclear transport of 3,5,3'-triiodothyronine in isolated hepatocytes.
    Mooradian AD; Schwartz HL; Mariash CN; Oppenheimer JH
    Endocrinology; 1985 Dec; 117(6):2449-56. PubMed ID: 4065040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Film autoradiography identifies unique features of [125I]3,3'5'-(reverse) triiodothyronine transport from blood to brain.
    Cheng LY; Outterbridge LV; Covatta ND; Martens DA; Gordon JT; Dratman MB
    J Neurophysiol; 1994 Jul; 72(1):380-91. PubMed ID: 7965021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative aspects of the distribution, metabolism, and excretion of six iodothyronines in the rat.
    DiStefano JJ; Feng D
    Endocrinology; 1988 Nov; 123(5):2514-25. PubMed ID: 3168932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic uptake of bromosulfophthalein-glutathione in perfused Eisai hyperbilirubinemic mutant rat liver: a multiple-indicator dilution study.
    Geng W; Schwab AJ; Horie T; Goresky CA; Pang KS
    J Pharmacol Exp Ther; 1998 Feb; 284(2):480-92. PubMed ID: 9454788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of phenytoin (diphenylhydantoin) on the extrathyroidal turnover of thyroxine, 3,5,3'-triiodothyronine, 3,3',5'-triiodothyronine, and 3',5'-diiodothyronine in man.
    Faber J; Lumholtz IB; Kirkegaard C; Poulsen S; Jørgensen PH; Siersbaek-Nielsen K; Friis T
    J Clin Endocrinol Metab; 1985 Dec; 61(6):1093-9. PubMed ID: 4055984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hypothyroidism on pathways for iodothyronine and tryptophan uptake into rat adipocytes.
    Ritchie JW; Collingwood CJ; Taylor PM
    Am J Physiol Endocrinol Metab; 2001 Feb; 280(2):E254-9. PubMed ID: 11158928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-compartmental analysis of effects of D-propranolol on thyroid hormone kinetics.
    van der Heijden JT; Krenning EP; van Toor H; Hennemann G; Docter R
    Am J Physiol; 1988 Jul; 255(1 Pt 1):E80-6. PubMed ID: 3389407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influx of thyroid hormones into rat liver in vivo. Differential availability of thyroxine and triiodothyronine bound by plasma proteins.
    Pardridge WM; Mietus LJ
    J Clin Invest; 1980 Aug; 66(2):367-74. PubMed ID: 6772672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.