These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1443620)

  • 1. Background correction by wavelength modulation for pulsed-laser-excited atomic fluorescence spectrometry.
    Su EG; Irwin RL; Liang Z; Michel RG
    Anal Chem; 1992 Aug; 64(15):1710-20. PubMed ID: 1443620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a tunable optical parametric oscillator laser system for multielement flame laser excited atomic fluorescence spectrometry of cobalt, copper, lead, manganese, and thallium in buffalo river sediment.
    Zhou JX; Hou X; Tsai SJ; Yang KX; Michel RG
    Anal Chem; 1997 Feb; 69(3):490-9. PubMed ID: 9030057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-excited atomic fluorescence in a pulsed hollow-cathode glow discharge.
    Glick M; Smith BW; Winefordner JD
    Anal Chem; 1990 Jan; 62(2):157-61. PubMed ID: 2310012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.
    Wagner EP; Smith BW; Winefordner JD
    Anal Chem; 1996 Sep; 68(18):3199-203. PubMed ID: 8797380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-excited atomic fluorescence in a flame as a high-sensitivity detector for organomanganese and organotin compounds following separation by high-performance liquid chromatography.
    Walton AP; Wei GT; Liang Z; Michel RG; Morris JB
    Anal Chem; 1991 Feb; 63(3):232-40. PubMed ID: 1824009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of thallium in bovine liver and mouse brains by laser excited atomic fluorescence spectrometry in a graphite tube furnace.
    Dougherty JP; Costello JA; Michel RG
    Anal Chem; 1988 Feb; 60(4):336-40. PubMed ID: 3358489
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of an electrothermal atomization laser-excited atomic fluorescence spectrometry procedure for direct measurements of arsenic in diluted serum.
    Swart DJ; Simeonsson JB
    Anal Chem; 1999 Nov; 71(21):4951-5. PubMed ID: 10565284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumentation for measuring fluorescence cross sections from airborne microsized particles.
    Manninen A; Putkiranta M; Rostedt A; Saarela J; Laurila T; Marjamäki M; Keskinen J; Hernberg R
    Appl Opt; 2008 Jan; 47(2):110-5. PubMed ID: 18188190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-excited atomic-fluorescence spectrometry in an electrothermal atomizer with Zeeman background correction.
    Dougherty JP; Preli FR; Michel RG
    Talanta; 1989; 36(1-2):151-9. PubMed ID: 18964684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of a Laser Wavelength Correction Method Applied to the Measurement of OH Radical with Laser-Induced Fluor.
    Xing XB; Hu RZ; Xie PH; chen H; Ling LY; Wang D; Wu J; Li ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):692-6. PubMed ID: 30148546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.
    Vera JA; Leong MB; Stevenson CL; Petrucci G; Winefordner JD
    Talanta; 1989 Dec; 36(12):1291-3. PubMed ID: 18964906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.
    Cabon JY; Giamarchi P; Le Bihan A
    Anal Chim Acta; 2010 Apr; 664(2):114-20. PubMed ID: 20363392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-fluorescence characteristics and analytical determination of manganese in an air-acetylene flame.
    Ebdon L; Kirkbright GF; West TS
    Talanta; 1970 Oct; 17(10):965-71. PubMed ID: 18960824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial discrimination against background with different optical systems for collection of fluorescence in laser-excited atomic fluorescence spectrometry with a graphite tube electrothermal atomizer.
    Yuzefovsky AI; Lonardo RF; Michel RG
    Anal Chem; 1995 Jul; 67(13):2246-55. PubMed ID: 8694251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements.
    Sivaprakasam V; Lin HB; Huston AL; Eversole JD
    Opt Express; 2011 Mar; 19(7):6191-208. PubMed ID: 21451645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of a dispersion-tuned wavelength-swept fiber laser for optical coherence tomography.
    Takubo Y; Shirahata T; Yamashita S
    Appl Opt; 2016 Sep; 55(27):7749-55. PubMed ID: 27661607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of copper in urine by carbon-furnace atomic-emission spectrometry.
    Marshall J; Ottaway JM
    Talanta; 1983 Aug; 30(8):571-7. PubMed ID: 18963424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.
    Le Bihan A; Cabon JY; Deschamps L; Giamarchi P
    Anal Chem; 2011 Jun; 83(12):4881-6. PubMed ID: 21524139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.