These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1443635)

  • 1. Determination of lithium at ultratrace levels in biological fluids by flame atomic emission spectrometry. Use of first-derivative spectrometry.
    Dol I; Knochen M; Vieras E
    Analyst; 1992 Aug; 117(8):1373-6. PubMed ID: 1443635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of endogenous lithium levels in serum and urine by electrothermal atomic absorption spectrometry: a method with potential clinical applications.
    Miller NL; Durr JA; Alfrey AC
    Anal Biochem; 1989 Nov; 182(2):245-9. PubMed ID: 2610339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of lithium in small-animal tissues at physiological levels by flame emission photometry.
    Pickett EE; Hawkins JL
    Anal Biochem; 1981 Apr; 112(2):213-8. PubMed ID: 7258636
    [No Abstract]   [Full Text] [Related]  

  • 4. Determination of lithium in microlitre amounts of human body fluids at therapeutic and normal levels by stable isotope dilution and field desorption mass spectrometry.
    Lehmann WD; Bahr U; Schulten HR
    Biomed Mass Spectrom; 1978 Sep; 5(9):536-9. PubMed ID: 708855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of lithium in blood serum--a comparison between molecular absorption spectrophotometry and emission flame spectrometry.
    Popov P; Otruba V; Sommer L
    Clin Chim Acta; 1986 Feb; 154(3):223-5. PubMed ID: 3955846
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of trace lithium in biological fluids using graphite furnace atomic absorption spectrophotometry: variability of urine matrices circumvented by cation exchange solid phase extraction.
    Magnin JL; Decosterd LA; Centeno C; Burnier M; Diezi J; Biollaz J
    Pharm Acta Helv; 1996 Oct; 71(4):237-46. PubMed ID: 8921742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Determination of lithium in blood and urine using atomic emission spectrophotometry].
    Pronchenko IA; Kuz'min BV; Buzulina VP; Ermakova IL
    Klin Lab Diagn; 1994; (6):13-5. PubMed ID: 7894896
    [No Abstract]   [Full Text] [Related]  

  • 8. Superiority of nitric acid for deproteinization in the determination of trace lithium in serum by graphite furnace atomic absorption spectrometry.
    Zhao J; Gao P; Wu S; Zhu D
    J Pharm Biomed Anal; 2009 Dec; 50(5):1075-9. PubMed ID: 19616397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of lethium in microliter samples of blood serum using flame atomic emission spectrometry with a tantalum filament vaporizer.
    Grime JK; Vickers TJ
    Anal Chem; 1975 Mar; 47(3):432-5. PubMed ID: 1137129
    [No Abstract]   [Full Text] [Related]  

  • 10. Digital image-based flame emission spectrometry.
    Silva Lyra W; Dos Santos VB; Dionízio AG; Martins VL; Almeida LF; Nóbrega Gaião E; Diniz PH; Silva EC; Araújo MC
    Talanta; 2009 Mar; 77(5):1584-9. PubMed ID: 19159768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon analysis in biological specimens by direct current plasma-atomic emission spectroscopy.
    Bercowy GM; Vo H; Rieders F
    J Anal Toxicol; 1994; 18(1):46-8. PubMed ID: 8127084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring lithium dose levels: estimation of lithium in blood and other body fluids.
    Cooper TB; Carroll BJ
    J Clin Psychopharmacol; 1981 Mar; 1(2):53-8. PubMed ID: 7028796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of tin in biological samples using gaseous hydride generation-inductively coupled plasma-atomic emission spectrometry.
    Yokoi K; Kimura M; Itokawa Y
    Anal Biochem; 1990 Oct; 190(1):71-7. PubMed ID: 2285149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix modifiers in graphite furnace atomic absorption analysis of trace lithium in biological fluids.
    Trapp GA
    Anal Biochem; 1985 Jul; 148(1):127-32. PubMed ID: 4037295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Respective contributions of atomic emission spectrometry (AES) and secondary ion mass spectrometry (SIMS) to trace element quantification].
    Aïoun J; Larras-Regard E; Mony MC; Hutin MF; Burnel D
    C R Seances Soc Biol Fil; 1989; 183(6):522-9. PubMed ID: 2534956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of Li, Na, K, Mg and Ca with a mechanised flame photometric micro-method. Mechanised micro-method ("injection method") of flame photometry (atomic absorption--atomic emission) for the determination of serum electrolytes and trace elements (Fe, Cu, Zn); Part I. (author's transl)].
    Berndt H; Jackwerth E
    J Clin Chem Clin Biochem; 1979 Feb; 17(2):71-6. PubMed ID: 422946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the determination of lithium in blood and urine.
    Robertson R; Fritze K; Grof P
    Clin Chim Acta; 1973 Apr; 45(1):25-31. PubMed ID: 4712861
    [No Abstract]   [Full Text] [Related]  

  • 18. A comparison of reference method values for calcium, lithium and magnesium with method-dependent assigned values.
    Külpmann WR; Buchholz R; Dyrssen C; Ruschke D
    J Clin Chem Clin Biochem; 1989 Sep; 27(9):631-7. PubMed ID: 2607323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved analysis of picomole quantities of lithium, sodium, and potassium in biological fluids.
    Shalmi M; Kibble JD; Day JP; Christensen P; Atherton JC
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F695-701. PubMed ID: 7943365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct determination of lithium in erythrocytes by electrothermal atomic absorption spectrometry.
    Genyuan Y; DeXuan X; Ruixiang J
    Analyst; 1995 Jun; 120(6):1657-9. PubMed ID: 7604954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.