These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1444272)

  • 1. Replication cycle of Bacillus subtilis hydroxymethyluracil-containing phages.
    Hoet PP; Coene MM; Cocito CG
    Annu Rev Microbiol; 1992; 46():95-116. PubMed ID: 1444272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the physical maps and redundant ends of the chromosomes of phages 2C, SP01, SP82 and phi e.
    Hoet P; Coene M; Cocito C
    Eur J Biochem; 1983 Apr; 132(1):63-7. PubMed ID: 6404631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Bacillus subtilis phages PZA, phi 29 and phi 15.
    Paces V; Hostomský Z; Fucík V; Pivec L; Zadrazil S
    Folia Biol (Praha); 1984; 30 Spec No():52-64. PubMed ID: 6327410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular phylogeny of phi29-like phages and their evolutionary relatedness to other protein-primed replicating phages and other phages hosted by gram-positive bacteria.
    Pecenková T; Paces V
    J Mol Evol; 1999 Feb; 48(2):197-208. PubMed ID: 9929388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of transcriptional promoters from Bacillus subtilis phage 2C.
    Daxhelet G; Gilot P; Hoet P
    Can J Microbiol; 1996 Sep; 42(9):919-26. PubMed ID: 8864214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning of DNA segments of phage 2C, which allows autonomous plasmid replication in Bacillus subtilis.
    Lannoy NN; Hoet PP; Cocito CG
    Eur J Biochem; 1985 Oct; 152(1):137-42. PubMed ID: 2995029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site directed substitution of 5-hydroxymethyluracil for thymine in replicating phi X-174am3 DNA via synthesis of 5-hydroxymethyl-2'-deoxyuridine-5'-triphosphate.
    Levy DD; Teebor GW
    Nucleic Acids Res; 1991 Jun; 19(12):3337-43. PubMed ID: 2062651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1.
    Grove A; Galeone A; Mayol L; Geiduschek EP
    J Mol Biol; 1996 Jul; 260(2):196-206. PubMed ID: 8764400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of a phage-modified RNA polymerase at hybrid promoters. Effects of substituting thymine for hydroxymethyluracil in a phage SP01 middle promoter.
    Choy HA; Romeo JM; Geiduschek EP
    J Mol Biol; 1986 Sep; 191(1):59-73. PubMed ID: 3098985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Profiling of
    Lavysh D; Sokolova M; Slashcheva M; Förstner KU; Severinov K
    mBio; 2017 Feb; 8(1):. PubMed ID: 28196958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. II: Host constitutive expression, repair DNA synthesis, and in vitro activity.
    Radany EH; Malanoski G; Ambulos NP; Friedberg EC; Yasbin RE
    Mutat Res; 1997 Aug; 384(2):121-34. PubMed ID: 9298120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinational-type transfer of viral DNA during bacteriophage 2C replication in Bacillus subtilis.
    Hoet P; Fraselle G; Cocito C
    J Virol; 1976 Mar; 17(3):718-26. PubMed ID: 815565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription regulation in Bacillus subtilis phage phi 29: expression of the viral promoters throughout the infection cycle.
    Monsalve M; Mencía M; Rojo F; Salas M
    Virology; 1995 Feb; 207(1):23-31. PubMed ID: 7871731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome of Bacillus subtilis bacteriophage SPO1.
    Stewart CR; Casjens SR; Cresawn SG; Houtz JM; Smith AL; Ford ME; Peebles CL; Hatfull GF; Hendrix RW; Huang WM; Pedulla ML
    J Mol Biol; 2009 Apr; 388(1):48-70. PubMed ID: 19285085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication.
    Illana B; Blanco L; Salas M
    J Mol Biol; 1996 Dec; 264(3):453-64. PubMed ID: 8969297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence analysis of DNA replication origins of the small Bacillus bacteriophages: evolutionary relationships.
    Yoshikawa H; Garvey KJ; Ito J
    Gene; 1985; 37(1-3):125-30. PubMed ID: 3932129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction, methylation and ligation of 5-hydroxymethyluracil-containing DNA.
    Vilpo JA; Vilpo LM
    Mutat Res; 1995 Feb; 316(3):123-31. PubMed ID: 7862175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo functional relationships among terminal proteins of Bacillus subtilis phi 29-related phages.
    Bravo A; Hermoso JM; Salas M
    Gene; 1994 Oct; 148(1):107-12. PubMed ID: 7926823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication.
    Castilla-Llorente V; Muñoz-Espín D; Villar L; Salas M; Meijer WJ
    EMBO J; 2006 Aug; 25(16):3890-9. PubMed ID: 16888621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic relocalization of phage phi 29 DNA during replication and the role of the viral protein p16.7.
    Meijer WJ; Lewis PJ; Errington J; Salas M
    EMBO J; 2000 Aug; 19(15):4182-90. PubMed ID: 10921898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.