These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 1444384)

  • 21. Utilization of phenoxyacetic acid, by strains using either the ortho or meta cleavage of catechol during phenol degradation, after conjugal transfer of tfdA, the gene encoding a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase.
    Radnoti de Lipthay J; Barkay T; Vekova J; Sørensen SJ
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):207-14. PubMed ID: 10091327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delftia sp. LCW, a strain isolated from a constructed wetland shows novel properties for dimethylphenol isomers degradation.
    Vásquez-Piñeros MA; Martínez-Lavanchy PM; Jehmlich N; Pieper DH; Rincón CA; Harms H; Junca H; Heipieper HJ
    BMC Microbiol; 2018 Sep; 18(1):108. PubMed ID: 30189831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1.
    Tallur PN; Megadi VB; Ninnekar HZ
    Biodegradation; 2008 Feb; 19(1):77-82. PubMed ID: 17431802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6.
    Spain JC; Gibson DT
    Appl Environ Microbiol; 1988 Jun; 54(6):1399-404. PubMed ID: 3415220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150.
    Haigler BE; Pettigrew CA; Spain JC
    Appl Environ Microbiol; 1992 Jul; 58(7):2237-44. PubMed ID: 1637161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of a benzoate-utilizing Pseudomonas strain from soil and production of catechol from benzoate by transpositional mutants.
    Wang CL; Takenaka S; Murakami S; Aoki K
    Microbiol Res; 2001; 156(2):151-8. PubMed ID: 11572455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03.
    Hong HB; Nam IH; Murugesan K; Kim YM; Chang YS
    Biodegradation; 2004 Oct; 15(5):303-13. PubMed ID: 15523913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of Pseudomonas sp. strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway.
    Kohler HP; van der Maarel MJ; Kohler-Staub D
    Appl Environ Microbiol; 1993 Mar; 59(3):860-6. PubMed ID: 8481010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of alkyl ethers, aralkyl ethers, and dibenzyl ether by Rhodococcus sp. strain DEE5151, isolated from diethyl ether-containing enrichment cultures.
    Kim YH; Engesser KH
    Appl Environ Microbiol; 2004 Jul; 70(7):4398-401. PubMed ID: 15240329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of an Erwinia sp. gene encoding diphenyl ether cleavage in Escherichia coli and an isolated Acinetobacter strain PE7.
    Liaw HJ; Srinivasan VR
    Appl Microbiol Biotechnol; 1990 Mar; 32(6):686-9. PubMed ID: 1366541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad.
    Polymenakou PN; Stephanou EG
    Biodegradation; 2005 Oct; 16(5):403-13. PubMed ID: 15865154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by pseudomonas strains.
    Sander P; Wittich RM; Fortnagel P; Wilkes H; Francke W
    Appl Environ Microbiol; 1991 May; 57(5):1430-40. PubMed ID: 16348484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product.
    Corvini PF; Meesters RJ; Schäffer A; Schröder HF; Vinken R; Hollender J
    Appl Environ Microbiol; 2004 Nov; 70(11):6897-900. PubMed ID: 15528560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth phase dependent substrate utilization by Pseudomonas strain PH1.
    Narde GK; Purohit HJ
    Prikl Biokhim Mikrobiol; 2002; 38(6):653-7. PubMed ID: 12449795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization.
    Krug M; Ziegler H; Straube G
    J Basic Microbiol; 1985; 25(2):103-10. PubMed ID: 4009428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600.
    Powlowski J; Shingler V
    Biodegradation; 1994 Dec; 5(3-4):219-36. PubMed ID: 7765834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.