These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 1444384)

  • 41. Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida.
    Murray K; Williams PA
    J Bacteriol; 1974 Mar; 117(3):1153-7. PubMed ID: 4813893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil.
    Liang B; Lu P; Li H; Li R; Li S; Huang X
    Chemosphere; 2009 Dec; 77(11):1614-9. PubMed ID: 19846192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacterial degradation of glycol ethers.
    Kawai F
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):532-8. PubMed ID: 8597556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway.
    Blasco R; Wittich RM; Mallavarapu M; Timmis KN; Pieper DH
    J Biol Chem; 1995 Dec; 270(49):29229-35. PubMed ID: 7493952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.
    Kaschabek SR; Kuhn B; Müller D; Schmidt E; Reineke W
    J Bacteriol; 2002 Jan; 184(1):207-15. PubMed ID: 11741862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localization and organization of phenol degradation genes of Pseudomonas putida strain H.
    Herrmann H; Müller C; Schmidt I; Mahnke J; Petruschka L; Hahnke K
    Mol Gen Genet; 1995 Apr; 247(2):240-6. PubMed ID: 7753034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of 2-chlorobenzoic acid in Pseudomonas stutzeri.
    Kozlovsky SA; Kunc F
    Folia Microbiol (Praha); 1995; 40(5):454-6. PubMed ID: 8846991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity.
    Alva VA; Peyton BM
    Environ Sci Technol; 2003 Oct; 37(19):4397-402. PubMed ID: 14572091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB.
    Moreno Horn M; Garbe LA; Tressl R; Adrian L; Görisch H
    Arch Microbiol; 2003 Apr; 179(4):234-41. PubMed ID: 12605291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp.
    Yamazoe A; Yagi O; Oyaizu H
    Biotechnol Lett; 2004 Mar; 26(6):479-86. PubMed ID: 15127788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of aromatic compounds by Caulobacter crescentus.
    Chatterjee DK; Bourquin AW
    J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial degradation of decabromodiphenyl ether (DBDE) in soil slurry microcosms.
    Chou HL; Hwa MY; Lee YC; Chang YJ; Chang YT
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5255-67. PubMed ID: 26561328
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolism of phenol and cresols by mutants of Pseudomonas putida.
    Bayly RC; Wigmore GJ
    J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1.
    Armengaud J; Timmis KN; Wittich RM
    J Bacteriol; 1999 Jun; 181(11):3452-61. PubMed ID: 10348858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of Phenol via Meta Cleavage Pathway by Pseudomonas fluorescens PU1.
    Mahiudddin M; Fakhruddin AN; Abdullah-Al-Mahin
    ISRN Microbiol; 2012; 2012():741820. PubMed ID: 23724329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors.
    Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z
    Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol.
    Kuever J; Kulmer J; Jannsen S; Fischer U; Blotevogel KH
    Arch Microbiol; 1993; 159(3):282-8. PubMed ID: 8481092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752.
    Schauer F; Henning K; Pscheidl H; Wittich RM; Fortnagel P; Wilkes H; Sinnwell V; Francke W
    Biodegradation; 1995 Jun; 6(2):173-80. PubMed ID: 7772943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of dibenzo- p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white-rot fungus Phlebia lindtneri.
    Mori T; Kondo R
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):200-5. PubMed ID: 12382064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.