These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 14448357)

  • 1. On the mode of action of kanamycin. II. Effect of kanamycin on the oxidation of C4-dicar-boxylic acids (malate, fumarate and succinate) and diamine (putrescine) by avian tubercle bacilli.
    AOKI T; HAYASHI A; ITO F
    J Antibiot (Tokyo); 1960 Jul; 13():260-4. PubMed ID: 14448357
    [No Abstract]   [Full Text] [Related]  

  • 2. Yield of oxidative phosphorylation associated with the oxidation of succinate to fumarate.
    GREENGARD P; MINNAERT K; SLATER EC; BETEL I
    Biochem J; 1959 Dec; 73(4):637-46. PubMed ID: 13851623
    [No Abstract]   [Full Text] [Related]  

  • 3. [Further observations on the action of kanamycin and viomycin on the phosphorus turnover of Mycobacterium avium].
    TSUKAMURA M
    Nihon Saikingaku Zasshi; 1961 Jan; 16():57-9. PubMed ID: 13778448
    [No Abstract]   [Full Text] [Related]  

  • 4. [Succinate and fumarate as regulators of the fat oxidizing enzyme system. V].
    SACCHETTO M; ROSSI CR
    Experientia; 1959 Feb; 15(2):65-6. PubMed ID: 13639919
    [No Abstract]   [Full Text] [Related]  

  • 5. MECHANISMS IN THE INHIBITION OF MICROORGANISMS BY SORBIC ACID.
    YORK GK; VAUGHN RH
    J Bacteriol; 1964 Aug; 88(2):411-7. PubMed ID: 14203358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity of fumarate as a switching factor of the bacterial flagellar motor.
    Barak R; Giebel I; Eisenbach M
    Mol Microbiol; 1996 Jan; 19(1):139-44. PubMed ID: 8821943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of thyroxine on oxidation of succinate and malate.
    WOLFF EC; BALL EG
    J Biol Chem; 1957 Feb; 224(2):1083-98. PubMed ID: 13405936
    [No Abstract]   [Full Text] [Related]  

  • 8. Fumarate catabolism in Helicobacter pylori.
    Mendz GL; Hazell SL
    Biochem Mol Biol Int; 1993 Oct; 31(2):325-32. PubMed ID: 8275020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of organic acids in Rhodopseudomonas palustris in light and dark.
    MORITA S
    J Biochem; 1961 Sep; 50():190-6. PubMed ID: 14476123
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of succinate, fumarate, and oxalacetate on ketone body production by liver slices from non-diabetic and diabetic rats.
    BEATTY CH; WEST ES; BOCEK RM
    J Biol Chem; 1958 Feb; 230(2):725-33. PubMed ID: 13525390
    [No Abstract]   [Full Text] [Related]  

  • 11. L-malic acid production using immobilized Saccharomyces cerevisiae.
    Figueiredo ZM; Carvalho JĂșnior LB
    Appl Biochem Biotechnol; 1991 Aug; 30(2):217-24. PubMed ID: 1952933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The metabolism of the organic acids of tobacco leaves. V. Effect of culture of excised leaves in solutions of succinate and L-malate.
    VICKERY HB; HARGREAVES CA
    J Biol Chem; 1952 May; 197(1):121-31. PubMed ID: 12981041
    [No Abstract]   [Full Text] [Related]  

  • 13. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM.
    BENZIMAN M; ABELIOVITZ A
    J Bacteriol; 1964 Feb; 87(2):270-7. PubMed ID: 14151044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase.
    Goldberg I; Lonberg-Holm K; Bagley EA; Stieglitz B
    Appl Environ Microbiol; 1983 Jun; 45(6):1838-47. PubMed ID: 6349526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro action of thyroxine analogs on succinate and malate oxidation.
    BARKER SB
    Endocrinology; 1957 Nov; 61(5):534-48. PubMed ID: 13480264
    [No Abstract]   [Full Text] [Related]  

  • 16. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.
    Komuniecki R; Komuniecki PR; Saz HJ
    J Parasitol; 1981 Oct; 67(5):601-8. PubMed ID: 7299574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. VII. THE ENERGY-REQUIRING REDUCTION OF PYRIDINE NUCLEOTIDE BY SUCCINATE AND THE ENERGY-YIELDING OXIDATION OF REDUCED PYRIDINE NUCLEOTIDE BY FUMARATE.
    SANADI DR; FLUHARTY AL
    Biochemistry; 1963; 2():523-8. PubMed ID: 14069541
    [No Abstract]   [Full Text] [Related]  

  • 18. [Biochemical properties of kanamycin-indifferent mutants of Mycobacterium avium (comparison with sensitive cells)].
    TSUKAMURA M; MIZUNO S
    Nihon Saikingaku Zasshi; 1961 Apr; 16():313-6. PubMed ID: 13778440
    [No Abstract]   [Full Text] [Related]  

  • 19. [NEW RESEARCH ON THE FORMATION OF PYOCYANIN].
    VALETTE JP; LABEYRIE S; NEUZIL E
    C R Seances Soc Biol Fil; 1964; 158():1343-7. PubMed ID: 14210570
    [No Abstract]   [Full Text] [Related]  

  • 20. Permeability of Azotobacter to succinate and malate.
    REPASKE R; SHROAT J; ALLMAN D
    J Bacteriol; 1960 Mar; 79(3):394-405. PubMed ID: 14437412
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.