These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1445356)

  • 1. Unusual pressure dependence of the lateral motion of pyrene-labeled phosphatidylcholine in bipolar lipid vesicles.
    Kao YL; Chang EL; Chong PL
    Biochem Biophys Res Commun; 1992 Nov; 188(3):1241-6. PubMed ID: 1445356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Archaebacterial lipid models: stable liposomes from 1-alky1-2-phytanyl-sn-glycero-3-phosphocholines.
    Yamauchi K; Doi K; Kinoshita M
    Biochim Biophys Acta; 1996 Sep; 1283(2):163-9. PubMed ID: 8809095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocholine.
    Yamauchi K; Doi K; Yoshida Y; Kinoshita M
    Biochim Biophys Acta; 1993 Mar; 1146(2):178-82. PubMed ID: 8383997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of archaebacterial bipolar tetraether liposomes by perylene fluorescence.
    Khan TK; Chong PL
    Biophys J; 2000 Mar; 78(3):1390-9. PubMed ID: 10692324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and rupture of archaebacterial cell membrane: a model study.
    Li S; Zheng F; Zhang X; Wang W
    J Phys Chem B; 2009 Jan; 113(4):1143-52. PubMed ID: 19123825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations.
    Dékány Fraňová M; Vattulainen I; Samuli Ollila OH
    Biochim Biophys Acta; 2014 May; 1838(5):1406-11. PubMed ID: 24508757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature.
    Zhai Y; Chong PL; Taylor LJ; Erlkamp M; Grobelny S; Czeslik C; Watkins E; Winter R
    Langmuir; 2012 Mar; 28(11):5211-7. PubMed ID: 22352806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral and transversal diffusion and phase transitions in erythrocyte membranes. An excimer fluorescence study.
    Galla HJ; Luisetti J
    Biochim Biophys Acta; 1980 Feb; 596(1):108-17. PubMed ID: 7353003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual thermal stability of liposomes made from bipolar tetraether lipids.
    Chang EL
    Biochem Biophys Res Commun; 1994 Jul; 202(2):673-9. PubMed ID: 8048936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes.
    Macdonald AG; Wahle KW; Cossins AR; Behan MK
    Biochim Biophys Acta; 1988 Feb; 938(2):231-42. PubMed ID: 3342234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodomain formation in lipid membranes probed by time-resolved fluorescence.
    Siu H; Duhamel J; Sasaki DY; Pincus JL
    Langmuir; 2010 Jul; 26(13):10985-94. PubMed ID: 20536249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron spin resonance.
    Bartucci R; Gambacorta A; Gliozzi A; Marsh D; Sportelli L
    Biochemistry; 2005 Nov; 44(45):15017-23. PubMed ID: 16274248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization.
    Shimanouchi T; Ishii H; Yoshimoto N; Umakoshi H; Kuboi R
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):156-60. PubMed ID: 19560324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidity of sarcoplasmic reticulum membranes investigated with dipyrenylpropane, an intramolecular excimer probe.
    Almeida LM; Vaz WL; Zachariasse KA; Madeira VM
    Biochemistry; 1982 Nov; 21(23):5972-7. PubMed ID: 7150540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains.
    Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P
    Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure dependence of pyrene excimer fluorescence in human erythrocyte membranes.
    Flamm M; Okubo T; Turro NJ; Schachter D
    Biochim Biophys Acta; 1982 Apr; 687(1):101-4. PubMed ID: 7074103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of non-lamellar phases in archaeal lipids at high temperature and high hydrostatic pressure by apolar polyisoprenoids.
    Salvador-Castell M; Brooks NJ; Peters J; Oger P
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183130. PubMed ID: 31734311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of polysialic acid on molecular dynamics of model membranes studied by 31P NMR spectroscopy.
    Timoszyk A; Gdaniec Z; Latanowicz L
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):142-5. PubMed ID: 14698401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.