These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1445721)

  • 1. Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution.
    Adachi J; Hasegawa M
    Jpn J Genet; 1992 Jun; 67(3):187-97. PubMed ID: 1445721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: rapid evolution in warm-blooded vertebrates.
    Adachi J; Cao Y; Hasegawa M
    J Mol Evol; 1993 Mar; 36(3):270-81. PubMed ID: 8483165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.
    Russo CA; Takezaki N; Nei M
    Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA.
    Reeves JH
    J Mol Evol; 1992 Jul; 35(1):17-31. PubMed ID: 1518082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders.
    Hasegawa M; Kishino H
    Jpn J Genet; 1989 Aug; 64(4):243-58. PubMed ID: 2483667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longevity and the evolution of the mitochondrial DNA-coded proteins in mammals.
    Rottenberg H
    Mech Ageing Dev; 2006 Sep; 127(9):748-60. PubMed ID: 16876233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of amino acid substitution in proteins encoded by mitochondrial DNA.
    Adachi J; Hasegawa M
    J Mol Evol; 1996 Apr; 42(4):459-68. PubMed ID: 8642615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of amino acid substitution and applications to mitochondrial protein evolution.
    Yang Z; Nielsen R; Hasegawa M
    Mol Biol Evol; 1998 Dec; 15(12):1600-11. PubMed ID: 9866196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating physicochemical properties of amino acids to variable nucleotide substitution patterns among sites.
    Yang Z
    Pac Symp Biocomput; 2000; ():81-92. PubMed ID: 10902158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires.
    Lin YH; Waddell PJ; Penny D
    Gene; 2002 Jul; 294(1-2):119-29. PubMed ID: 12234673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian phylogeny inferred from multiple protein data.
    Kuma K; Miyata T
    Jpn J Genet; 1994 Oct; 69(5):555-66. PubMed ID: 7999372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene for cytochrome c oxidase subunit II in duck mitochondrial DNA: structural features and sequence evolution.
    Pan YF; Lee YW; Wei YH; Chiang AN
    Biochem Mol Biol Int; 1993 Jul; 30(3):479-89. PubMed ID: 8401306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the pattern of nucleotide substitution.
    Yang Z
    J Mol Evol; 1994 Jul; 39(1):105-11. PubMed ID: 8064867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris.
    Randi E; Lucchini V
    J Mol Evol; 1998 Oct; 47(4):449-62. PubMed ID: 9767690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of amino acid frequencies to directional mutation pressure in mitochondrial genome sequences is related to the physical properties of the amino acids and to the structure of the genetic code.
    Urbina D; Tang B; Higgs PG
    J Mol Evol; 2006 Mar; 62(3):340-61. PubMed ID: 16477524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and evolution of a duck mitochondrial genome.
    Ramirez V; Savoie P; Morais R
    J Mol Evol; 1993 Sep; 37(3):296-310. PubMed ID: 8230253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tempo and mode of synonymous substitutions in mitochondrial DNA of primates.
    Adachi J; Hasegawa M
    Mol Biol Evol; 1996 Jan; 13(1):200-8. PubMed ID: 8583892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of mitochondrial tRNAs in five vertebrates.
    Jukes TH
    J Mol Evol; 1995 May; 40(5):537-40. PubMed ID: 7783227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods.
    Gibson A; Gowri-Shankar V; Higgs PG; Rattray M
    Mol Biol Evol; 2005 Feb; 22(2):251-64. PubMed ID: 15483324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.