These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The relationship of acetylcholinesterase in the cochlea to the olivocochlear bundle. CHURCHILL JA; SCHUKNECHT HF Henry Ford Hosp Med Bull; 1959 Sep; 7():202-10. PubMed ID: 13810226 [No Abstract] [Full Text] [Related]
6. [The tetrazole reaction in the guinea pig cochlea after potassium cyanide blockage of tissue respiration]. VOSTEEN KH Arch Ohren Nasen Kehlkopfheilkd; 1956; 169(2):415-9. PubMed ID: 13382234 [No Abstract] [Full Text] [Related]
7. The localization of acetylcholinesterase in the cochlea. SCHUKNECHT HF; CHURCHILL JA; DORAN R AMA Arch Otolaryngol; 1959 May; 69(5):549-59. PubMed ID: 13636599 [No Abstract] [Full Text] [Related]
8. [Studies on basal metabolism in the labyrinth of the guinea pig]. VOSTEEN KH Z Laryngol Rhinol Otol; 1956 Jun; 35(6):400-2. PubMed ID: 13353403 [No Abstract] [Full Text] [Related]
9. [On the level of protein metabolism in the tissue of the cochlea in the normal rat and in rats with chronic otitis media. Autoradiographic studies with H3-labelled leucine]. KOBURG E; PLESTER D Arch Ohren Nasen Kehlkopfheilkd; 1962; 179():332-7. PubMed ID: 14457522 [No Abstract] [Full Text] [Related]
10. [Histochemical studies on blocking succinc dehydrogenase in the guinea pig cochlea]. SCHAETZLE W; MUESEBECK K Arch Ohren Nasen Kehlkopfheilkd; 1962; 181():49-57. PubMed ID: 13976637 [No Abstract] [Full Text] [Related]
12. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model. Plontke SK; Siedow N; Wegener R; Zenner HP; Salt AN Audiol Neurootol; 2007; 12(1):37-48. PubMed ID: 17119332 [TBL] [Abstract][Full Text] [Related]
13. Dysfunctions of energy releasing and consuming processes of the cochlea. Thalmann R; Kusakari J; Miyoshi T Laryngoscope; 1973 Oct; 83(10):1690-712. PubMed ID: 4758766 [No Abstract] [Full Text] [Related]
14. Cloning of m-ehk2 from the murine inner ear, an eph family receptor tyrosine kinase expressed in the developing and adult cochlea. Lee AM; Navaratnam D; Ichimiya S; Greene MI; Davis JG DNA Cell Biol; 1996 Oct; 15(10):817-25. PubMed ID: 8892754 [TBL] [Abstract][Full Text] [Related]
15. HISTOCHEMICAL LOCALIZATION OF DEHYDROGENASES IN THE COCHLEA OF LIVING ANIMALS. SPOENDLIN HH; BALOGH K Laryngoscope; 1963 Aug; 73():1061-83. PubMed ID: 14050894 [No Abstract] [Full Text] [Related]
16. Aerobic metabolism of the inner ear: results of a critical evaluation. Spector GJ; Lucente FE Laryngoscope; 1974 Oct; 84(10):1663-72. PubMed ID: 4418128 [No Abstract] [Full Text] [Related]
17. [Biochemical aspects and possibilities on acoustic trauma research concerning the inner ear]. Gerhardt HJ; Scheibe F; Berndt H Z Gesamte Hyg; 1973 Jan; 19(1):21-4. PubMed ID: 4700982 [No Abstract] [Full Text] [Related]
18. Expression and function of pannexins in the inner ear and hearing. Zhao HB BMC Cell Biol; 2016 May; 17 Suppl 1(Suppl 1):16. PubMed ID: 27229462 [TBL] [Abstract][Full Text] [Related]
19. Localization of endotoxin in the inner ear following inoculation into the middle ear. Takumida M; Anniko M Acta Otolaryngol; 2004 Sep; 124(7):772-7. PubMed ID: 15370558 [TBL] [Abstract][Full Text] [Related]
20. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles. Kim DK; Park SN; Park KH; Park CW; Yang KJ; Kim JD; Kim MS Drug Deliv; 2015 May; 22(3):367-74. PubMed ID: 24447111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]