These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14458262)

  • 1. Relationship between adenosine triphosphate and cation transport in the human red cell.
    KONSEK J; BISHOP C
    Proc Soc Exp Biol Med; 1962; 110():813-7. PubMed ID: 14458262
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of inosine and adenine on adenosine triphosphate regeneration and shape transformation in long-stored erythrocyts.
    NAKAO M; NAKAO T; TATIBANA M; YOSHIKAWA H; ABE T
    Biochim Biophys Acta; 1959 Apr; 32():564-5. PubMed ID: 14425915
    [No Abstract]   [Full Text] [Related]  

  • 3. [EFFECTS OF G-STROPHANTHIN, ENERGY-RICH PHOSPHATES AND METABOLIC INHIBITORS ON ACTIVE CATION TRANSPORT IN REFRIGERATED HUMAN ERYTHROCYTES].
    SAITO H
    Nihon Yakurigaku Zasshi; 1963 Jul; 59():233-41. PubMed ID: 14068851
    [No Abstract]   [Full Text] [Related]  

  • 4. The biosynthesis of adenosine triphosphate and guanosine triphosphate in the rabbit erythrocyte in vivo and in vitro.
    LOWY BA; RAMOT B; LONDON IM
    J Biol Chem; 1960 Oct; 235():2920-3. PubMed ID: 13763873
    [No Abstract]   [Full Text] [Related]  

  • 5. [Contribution to the mechanism of phosphate transport in erythrocytes].
    HILLMANN G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1962; 78():654-60. PubMed ID: 13907469
    [No Abstract]   [Full Text] [Related]  

  • 6. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE.
    SEN AK; POST RL
    J Biol Chem; 1964 Jan; 239():345-52. PubMed ID: 14114864
    [No Abstract]   [Full Text] [Related]  

  • 7. THE CONTROL OF ERYTHROCYTE GLYCOLYSIS BY ACTIVE CATION TRANSPORT.
    MINAKAMI S; KAKINUMA K; YOSHIKAWA H
    Biochim Biophys Acta; 1964 Aug; 90():434-6. PubMed ID: 14220740
    [No Abstract]   [Full Text] [Related]  

  • 8. An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity.
    Karlish SJ; Glynn IM
    Ann N Y Acad Sci; 1974; 242(0):461-70. PubMed ID: 4279599
    [No Abstract]   [Full Text] [Related]  

  • 9. Compartmentation of orthophosphate and adenine nucleotides in human red cells.
    Till U; Köhler W; Ruschke I; Köhler A; Lösche W
    Eur J Biochem; 1973 May; 35(1):167-78. PubMed ID: 4713238
    [No Abstract]   [Full Text] [Related]  

  • 10. Value of adenine, various nucleosides, and ouabain in maintenance of integrity of red blood cells under blood bank conditions.
    Odake K; Bishop C; Warner W; Ambrus JL
    Vox Sang; 1969 Nov; 17(5):375-92. PubMed ID: 5360155
    [No Abstract]   [Full Text] [Related]  

  • 11. Cation fluxes in the red blood cell: Na+,K+ pump.
    Sachs JR
    Methods Enzymol; 1989; 173():80-93. PubMed ID: 2550737
    [No Abstract]   [Full Text] [Related]  

  • 12. [Ribose metabolism and ATP content of normal and methemoglobin-containing anuclear erythrocytes].
    LACHHEIN L; GRADE K; MATTHIES H
    Acta Biol Med Ger; 1961; 7():434-42. PubMed ID: 14461368
    [No Abstract]   [Full Text] [Related]  

  • 13. CATION AND ANION BALANCE DURING ACTIVE ACCUMULATION OF CA++ AND MG++ BY ISOLATED MITOCHONDRIA.
    CARAFOLI E; ROSSI CS; LEHNINGER AL
    J Biol Chem; 1964 Sep; 239():3055-61. PubMed ID: 14217896
    [No Abstract]   [Full Text] [Related]  

  • 14. [Metabolism of human erythrocytes after pre-incubation in hyperthermia].
    Banaschak H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):469-76. PubMed ID: 4176846
    [No Abstract]   [Full Text] [Related]  

  • 15. Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells.
    Valeri CR; Hirsch NM
    J Lab Clin Med; 1969 May; 73(5):722-33. PubMed ID: 5779258
    [No Abstract]   [Full Text] [Related]  

  • 16. The red cell sodium, potassium, inorganic phosphate, ATP and 2,3DPG concentrations in chronic renal failure.
    Jabłońska-Skwiecinśka E; Staniszewska K; Kowalska H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1987; 114(4):493-5. PubMed ID: 2446986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STUDIES OF THE MECHANISM OF CATION TRANSPORT. II. A PHOSPHORLATED INTERMEDIATE IN THE CATION STIMULATED ENZYMIC HYDROLYSIS OF ADENOSINE TRIPHOSPHATE.
    CHARNOCK JS; ROSENTHAL AS; POST RL
    Aust J Exp Biol Med Sci; 1963 Dec; 41():675-86. PubMed ID: 14100791
    [No Abstract]   [Full Text] [Related]  

  • 18. Adenosine triphosphatase and active cation transport in red blood cell membranes.
    Dunham PB; Gunn RB
    Arch Intern Med; 1972 Feb; 129(2):241-7. PubMed ID: 4258088
    [No Abstract]   [Full Text] [Related]  

  • 19. [Sodium, potassium, ATP, 2,3-diphosphoglycerate and inorganic phosphate levels in erythrocytes of patients on hemodialysis].
    Jabłońska-Skwiecińska E; Kowalska H; Staniszewska K
    Pol Arch Med Wewn; 1988 Mar; 79(3):140-4. PubMed ID: 2980658
    [No Abstract]   [Full Text] [Related]  

  • 20. [The adenosine polyphosphatase localized on the surface of nucleated red corpuscles].
    WENKSTERN TW; ENGELHART WA
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1959; 76():422-31. PubMed ID: 13843980
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.