These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14458448)

  • 21. Oxidation of glycolic acid by Penicillium chrysogenum.
    CORPE WA; STONE RW
    J Bacteriol; 1960 Oct; 80(4):452-6. PubMed ID: 13695635
    [No Abstract]   [Full Text] [Related]  

  • 22. Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate.
    UMBARGER HE; BROWN B
    J Biol Chem; 1958 Nov; 233(5):1156-60. PubMed ID: 13598751
    [No Abstract]   [Full Text] [Related]  

  • 23. Formation of malate from glycollate by Pseudomonas ovalis Chester.
    KORNBERG HL; GOTTO AM
    Nature; 1959 Jun; 183():1791-3. PubMed ID: 14411058
    [No Abstract]   [Full Text] [Related]  

  • 24. Microbial metabolism of C 1 and C 2 compounds. The role of glyoxylate, glycollate and acetate in the growth of Pseudomonas AM1 on ethanol and on C 1 compounds.
    Dunstan PM; Anthony C; Drabble WT
    Biochem J; 1972 Jun; 128(1):107-15. PubMed ID: 5085544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial metabolism of C 1 and C 2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1.
    Dunstan PM; Anthony C; Drabble WT
    Biochem J; 1972 Jun; 128(1):99-106. PubMed ID: 5085665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [DEMONSTRATION OF 2 MALATE SYNTHASES IN ESCHERICHIA COLI].
    FALMAGNE P; VANDERWINKEL E; WIAME JM
    Biochim Biophys Acta; 1965 May; 99():246-58. PubMed ID: 14336062
    [No Abstract]   [Full Text] [Related]  

  • 27. Interrelationships between the tricarboxylic acid and glyoxylate cycles studied with bacterial auxotrophs.
    REEVES HC; AJL SJ
    Can J Microbiol; 1962 Apr; 8():241-7. PubMed ID: 14491018
    [No Abstract]   [Full Text] [Related]  

  • 28. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation.
    Arifin Y; Archer C; Lim S; Quek LE; Sugiarto H; Marcellin E; Vickers CE; Krömer JO; Nielsen LK
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9033-44. PubMed ID: 25125039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial production of glycolate from acetate by metabolically engineered Escherichia coli.
    Li W; Chen J; Liu CX; Yuan QP; Li ZJ
    J Biotechnol; 2019 Feb; 291():41-45. PubMed ID: 30615909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [EFFECT OF DICARBOXYLIC ACIDS OF THE CITRIC CYCLE ON THE OXIDATION OF GLUTAMATE IN RAT LIVER MITOCHONDRIA].
    PAPA S; PALMIERI F; FRANCAVILLA A; QUAGLIARIELLO E
    Boll Soc Ital Biol Sper; 1963 Dec; 39():1629-33. PubMed ID: 14124823
    [No Abstract]   [Full Text] [Related]  

  • 32. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.
    Haushalter RW; Phelan RM; Hoh KM; Su C; Wang G; Baidoo EE; Keasling JD
    J Am Chem Soc; 2017 Apr; 139(13):4615-4618. PubMed ID: 28291347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2015 Sep; 63(37):8199-208. PubMed ID: 26359801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutants of Escherichia coli K12 with defects in anaerobic pyruvate metabolism.
    Pascal MC; Chippaux M; Abou-Jaoudé A; Blaschkowski HP; Knappe J
    J Gen Microbiol; 1981 May; 124(1):35-42. PubMed ID: 7033467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate].
    Hatchikian EC; Le Gall J
    Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009
    [No Abstract]   [Full Text] [Related]  

  • 36. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.
    Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F
    ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The utilization of acetate for synthesis in Escherichia coli.
    McQUILLEN K; ROBERTS RB
    J Biol Chem; 1954 Mar; 207(1):81-95. PubMed ID: 13152082
    [No Abstract]   [Full Text] [Related]  

  • 38. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production.
    Causey TB; Zhou S; Shanmugam KT; Ingram LO
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):825-32. PubMed ID: 12556564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citrate accumulation from glycollate by an oxalate decomposing organism.
    JAYASURIYA GC
    Biochem J; 1954 Sep; 58(332nd Meeting):xxxi. PubMed ID: 13208652
    [No Abstract]   [Full Text] [Related]  

  • 40. Probable mechanism of the oxidation of acetate to glycolate by the way of the glycolaldehyde.
    BOLCATO V; LEGGIERO G
    Experientia; 1959 Oct; 15():388-9. PubMed ID: 13802280
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.