These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1445860)

  • 1. Synthesis of 3'-C-methyladenosine and 3'-C-methyluridine diphosphates and their interaction with the ribonucleoside diphosphate reductase from Corynebacterium nephridii.
    Ong SP; Nelson LS; Hogenkamp HP
    Biochemistry; 1992 Nov; 31(45):11210-5. PubMed ID: 1445860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2'-C-methyladenosine and 2'-C-methyluridine 5'-diphosphates are mechanism-based inhibitors of ribonucleoside diphosphate reductase from Corynebacterium nephridii.
    Ong SP; McFarlan SC; Hogenkamp HP
    Biochemistry; 1993 Oct; 32(42):11397-404. PubMed ID: 8218205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism-based inhibition of ribonucleoside diphosphate reductase from Corynebacterium nephridii by 2'-C-methyladenosine diphosphate.
    McFarlan SC; Ong SP; Hogenkamp HP
    Biochemistry; 1996 Apr; 35(14):4485-91. PubMed ID: 8605198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The purification and characterization of an adenosylcobalamin-dependent ribonucleoside diphosphate reductase from Corynebacterium nephridii.
    Tsai PK; Hogenkamp HP
    J Biol Chem; 1980 Feb; 255(4):1273-8. PubMed ID: 6986368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric regulation of calf thymus ribonucleoside diphosphate reductase.
    Eriksson S; Thelander L; Akerman M
    Biochemistry; 1979 Jul; 18(14):2948-52. PubMed ID: 223624
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3'-C--H bond cleavage.
    Stubbe J; Ator M; Krenitsky T
    J Biol Chem; 1983 Feb; 258(3):1625-31. PubMed ID: 6337142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of human ribonucleotide reductase from Molt-4F cells.
    Chang CH; Cheng YC
    Cancer Res; 1979 Dec; 39(12):5081-6. PubMed ID: 498135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleotide reductase induced by herpes simplex type 1 virus. Characterization of a distinct enzyme.
    Averett DR; Lubbers C; Elion GB; Spector T
    J Biol Chem; 1983 Aug; 258(16):9831-8. PubMed ID: 6309786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site of ribonucleoside diphosphate reductase from Escherichia coli. Inactivation of the enzyme by 2'-substituted ribonucleoside diphosphates.
    Thelander L; Larsson B
    J Biol Chem; 1976 Mar; 251(5):1398-405. PubMed ID: 767333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative model for allosteric control of purine reduction by murine ribonucleotide reductase.
    Scott CP; Kashlan OB; Lear JD; Cooperman BS
    Biochemistry; 2001 Feb; 40(6):1651-61. PubMed ID: 11327824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3'-C--H bond cleavage.
    Stubbe J; Ackles D
    J Biol Chem; 1980 Sep; 255(17):8027-30. PubMed ID: 6997288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride, pyrophosphate, and base release from 2'-deoxy-2'-fluoronucleoside 5'-diphosphates by ribonucleoside-diphosphate reductase.
    Stubbe JA; Kozarich JW
    J Biol Chem; 1980 Jun; 255(12):5511-3. PubMed ID: 6247337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic study on the chemical cleavage of nucleoside diphosphate sugars.
    Huhta E; Parjanen A; Mikkola S
    Carbohydr Res; 2010 Mar; 345(5):696-703. PubMed ID: 20138257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Control mechanisms of the ribonucleotide reduction in mammalian tissue (author's transl)].
    Kummer D; Kraml F; Heitland W; Jacob E
    Z Krebsforsch Klin Onkol Cancer Res Clin Oncol; 1978 Jan; 91(1):23-34. PubMed ID: 146339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse ribonucleotide reductase control: influence of substrate binding upon interactions with allosteric effectors.
    Chimploy K; Mathews CK
    J Biol Chem; 2001 Mar; 276(10):7093-100. PubMed ID: 11099495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enantioselectivities of the active and allosteric sites of mammalian ribonucleotide reductase.
    He J; Roy B; Périgaud C; Kashlan OB; Cooperman BS
    FEBS J; 2005 Mar; 272(5):1236-42. PubMed ID: 15720397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of ribonucleotide reductase from herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs.
    Ator MA; Stubbe J; Spector T
    J Biol Chem; 1986 Mar; 261(8):3595-9. PubMed ID: 3005293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, characterization, and substrate and inhibitor structure-activity studies of rat liver FAD-AMP lyase (cyclizing): preference for FAD and specificity for splitting ribonucleoside diphosphate-X into ribonucleotide and a five-atom cyclic phosphodiester of X, either a monocyclic compound or a cis-bicyclic phosphodiester-pyranose fusion.
    Cabezas A; Pinto RM; Fraiz F; Canales J; González-Santiago S; Cameselle JC
    Biochemistry; 2001 Nov; 40(45):13710-22. PubMed ID: 11695920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity labeling of ribonucleotide reductase by the 2',3'-dialdehyde derivatives of ribonucleotides.
    Tsai PK; Hogenkamp HP
    Arch Biochem Biophys; 1983 Oct; 226(1):276-84. PubMed ID: 6357087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of [14C]uridine 5'-diphosphate and [14C]guanosine 5'-diphosphate.
    Cory JG; Bacon PE
    Prep Biochem; 1984 Aug; 14(3):231-7. PubMed ID: 6483806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.