BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1445869)

  • 1. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis.
    Holland DR; Tronrud DE; Pley HW; Flaherty KM; Stark W; Jansonius JN; McKay DB; Matthews BW
    Biochemistry; 1992 Nov; 31(46):11310-6. PubMed ID: 1445869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution.
    Stark W; Pauptit RA; Wilson KS; Jansonius JN
    Eur J Biochem; 1992 Jul; 207(2):781-91. PubMed ID: 1633827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin.
    Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W
    J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermolysin in the absence of substrate has an open conformation.
    Hausrath AC; Matthews BW
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1002-7. PubMed ID: 12037302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution.
    Banbula A; Potempa J; Travis J; Fernandez-Catalán C; Mann K; Huber R; Bode W; Medrano F
    Structure; 1998 Sep; 6(9):1185-93. PubMed ID: 9753696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A resolution and comparison with the homologous but more thermostable enzyme thermolysin.
    Pauptit RA; Karlsson R; Picot D; Jenkins JA; Niklaus-Reimer AS; Jansonius JN
    J Mol Biol; 1988 Feb; 199(3):525-37. PubMed ID: 3127592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK
    Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry.
    Liu YH; Konermann L
    Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487.
    Fiebig D; Storka J; Roeder M; Meyners C; Schmelz S; Blankenfeldt W; Scrima A; Kolmar H; Fuchsbauer HL
    FEBS J; 2018 Nov; 285(22):4246-4264. PubMed ID: 30171661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase.
    Sidler W; Niederer E; Suter F; Zuber H
    Biol Chem Hoppe Seyler; 1986 Jul; 367(7):643-57. PubMed ID: 3092843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic structures of the elastase of Pseudomonas aeruginosa.
    McKay DB; Thayer MM; Flaherty KM; Pley H; Benvegnu D
    Matrix Suppl; 1992; 1():112-5. PubMed ID: 1480011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water.
    van Aalten DM; Amadei A; Linssen AB; Eijsink VG; Vriend G; Berendsen HJ
    Proteins; 1995 May; 22(1):45-54. PubMed ID: 7675786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine --> alanine mutations.
    Veltman OR; Eijsink VG; Vriend G; de Kreij A; Venema G; Van den Burg B
    Biochemistry; 1998 Apr; 37(15):5305-11. PubMed ID: 9548762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of zinc substitutions in the active site of thermolysin.
    Holland DR; Hausrath AC; Juers D; Matthews BW
    Protein Sci; 1995 Oct; 4(10):1955-65. PubMed ID: 8535232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of the structure of Bacillus brevis neutral proteinase and its biosynthesis in Bacillus subtilis cells].
    Kaĭdalova NV; Akimkina TV; Khodova OD; Kostrov SV; Strongin AIa
    Mol Biol (Mosk); 1990; 24(5):1381-92. PubMed ID: 2127074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin.
    Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M
    J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.