BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1445904)

  • 1. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris.
    Schneegurt MA; Beale SI
    Biochemistry; 1992 Dec; 31(47):11677-83. PubMed ID: 1445904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves.
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    Eur J Biochem; 1994 Jan; 219(1-2):671-9. PubMed ID: 8307032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C2
    Garg H; Loughlin PC; Willows RD; Chen M
    J Biol Chem; 2017 Nov; 292(47):19279-19289. PubMed ID: 28972142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays).
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    FEBS Lett; 1993 May; 323(1-2):31-4. PubMed ID: 8495742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors.
    Schliep M; Crossett B; Willows RD; Chen M
    J Biol Chem; 2010 Sep; 285(37):28450-6. PubMed ID: 20610399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f.
    Sawicki A; Willows RD; Chen M
    Photosynth Res; 2019 Apr; 140(1):115-127. PubMed ID: 30604202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin pi-macrocycle.
    Hirai Y; Tamiaki H; Kashimura S; Saga Y
    Photochem Photobiol Sci; 2009 Dec; 8(12):1701-7. PubMed ID: 20024167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions.
    Hirai Y; Kashimura S; Saga Y
    Photochem Photobiol; 2011; 87(2):302-7. PubMed ID: 21143484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear dichroism of microalgae, developing thylakoids and isolated pigment-protein complexes in stretched poly(vinyl alcohol) films at 77 K.
    Biggins J; Svejkovský J
    Biochim Biophys Acta; 1980 Oct; 592(3):565-76. PubMed ID: 6774749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll.
    Curty C; Engel N; Gossauer A
    FEBS Lett; 1995 May; 364(1):41-4. PubMed ID: 7750540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase.
    Hörtensteiner S; Wüthrich KL; Matile P; Ongania KH; Kräutler B
    J Biol Chem; 1998 Jun; 273(25):15335-9. PubMed ID: 9624113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll forms and excitation energy transfer pathways in light-harvesting chlorophyll a/b-protein complexes isolated from the siphonous green alga, Bryopsis maxima.
    Nakayama K; Mimuro M
    Biochim Biophys Acta; 1994 Feb; 1184(1):103-10. PubMed ID: 8305448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts.
    Hoober JK; Eggink LL; Chen M
    Photosynth Res; 2007; 94(2-3):387-400. PubMed ID: 17505910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements.
    Croce R; Müller MG; Bassi R; Holzwarth AR
    Biophys J; 2001 Feb; 80(2):901-15. PubMed ID: 11159457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 18O-Labelled chlorophyll derivatives at carbonyl oxygen atoms by acidic hydrolysis of the ethylene ketal and acetal.
    Morishita H; Tamiaki H
    Bioorg Med Chem; 2003 Sep; 11(18):4049-57. PubMed ID: 12927867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy.
    Wörmke S; Mackowski S; Brotosudarmo TH; Jung C; Zumbusch A; Ehrl M; Scheer H; Hofmann E; Hiller RG; Bräuchle C
    Biochim Biophys Acta; 2007 Jul; 1767(7):956-64. PubMed ID: 17572378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the pigment molecules in the chlorophyll a/b/c containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy.
    Goss R; Wilhelm C; Garab G
    Biochim Biophys Acta; 2000 Apr; 1457(3):190-9. PubMed ID: 10773164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and efficiency of excitation energy transfer from chlorophylls, their heavy metal-substituted derivatives, and pheophytins to singlet oxygen.
    Küpper H; Dedic R; Svoboda A; Hála J; Kroneck PM
    Biochim Biophys Acta; 2002 Aug; 1572(1):107-13. PubMed ID: 12204339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stereochemistry of chlorophyll-c₃ from the haptophyte Emiliania huxleyi: the (13²R)-enantiomers of chlorophylls-c are exclusively selected as the photosynthetically active pigments in chromophyte algae.
    Mizoguchi T; Kimura Y; Yoshitomi T; Tamiaki H
    Biochim Biophys Acta; 2011 Nov; 1807(11):1467-73. PubMed ID: 21806961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll a-proteins at low temperatures.
    Ilagan RP; Koscielecki JF; Hiller RG; Sharples FP; Gibson GN; Birge RR; Frank HA
    Biochemistry; 2006 Nov; 45(47):14052-63. PubMed ID: 17115700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.