These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1446108)

  • 1. Correlation of MR changes with Doppler US measurements of blood flow in exercising normal muscle.
    Morvan D; Vilgrain V; Arrivé L; Nahum H
    J Magn Reson Imaging; 1992; 2(6):645-52. PubMed ID: 1446108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in magnetic resonance transverse relaxation times of two muscles following standardized exercise.
    Price TB; McCauley TR; Duleba AJ; Wilkens KL; Gore JC
    Med Sci Sports Exerc; 1995 Oct; 27(10):1421-9. PubMed ID: 8531614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex-specific influence of aging on exercising leg blood flow.
    Parker BA; Smithmyer SL; Pelberg JA; Mishkin AD; Proctor DN
    J Appl Physiol (1985); 2008 Mar; 104(3):655-64. PubMed ID: 18162481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [MR-Imaging of lower leg muscle perfusion].
    Leppek R; Hoos O; Sattler A; Kohle S; Azzam S; Al Haffar I; Keil B; Ricken P; Klose KJ; Alfke H
    Herz; 2004 Feb; 29(1):32-46. PubMed ID: 14968340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle metabolism in heart failure: a 31P nuclear magnetic resonance spectroscopy study of leg muscle.
    Arnolda L; Conway M; Dolecki M; Sharif H; Rajagopalan B; Ledingham JG; Sleight P; Radda GK
    Clin Sci (Lond); 1990 Dec; 79(6):583-9. PubMed ID: 2176944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent calf and foot compression increases lower extremity blood flow.
    Eze AR; Comerota AJ; Cisek PL; Holland BS; Kerr RP; Veeramasuneni R; Comerota AJ
    Am J Surg; 1996 Aug; 172(2):130-4; discussion 135. PubMed ID: 8795514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuous wave Doppler velocimeter for monitoring blood flow in the popliteal artery, compared with venous occlusion plethysmography of the calf.
    Lubbers J; Bernink PJ; Barendsen GJ; van den Berg JW
    Pflugers Arch; 1979 Nov; 382(3):241-8. PubMed ID: 575414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise.
    Hood VL; Schubert C; Keller U; Müller S
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F479-85. PubMed ID: 3414804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in cross-sectional area in human exercising and non-exercising skeletal muscles.
    Nygren AT; Greitz D; Kaijser L
    Eur J Appl Physiol; 2000 Feb; 81(3):210-3. PubMed ID: 10638379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic characteristics of T2*-weighted signal in calf muscles of peripheral artery disease during low-intensity exercise.
    Li Z; Muller MD; Wang J; Sica CT; Karunanayaka P; Sinoway LI; Yang QX
    J Magn Reson Imaging; 2017 Jul; 46(1):40-48. PubMed ID: 27783446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle.
    Morvan D; Leroy-Willig A
    Magn Reson Imaging; 1995; 13(7):943-8. PubMed ID: 8583872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MR imaging as a potential diagnostic test for metabolic myopathies: importance of variations in the T2 of muscle with exercise.
    Jehenson P; Leroy-Willig A; de Kerviler E; Duboc D; Syrota A
    AJR Am J Roentgenol; 1993 Aug; 161(2):347-51. PubMed ID: 8333376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers.
    Fleckenstein JL; Canby RC; Parkey RW; Peshock RM
    AJR Am J Roentgenol; 1988 Aug; 151(2):231-7. PubMed ID: 3260716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exertional heatstroke and muscle metabolism: an in vivo 31P-MRS study.
    Payen JF; Bourdon L; Reutenauer H; Melin B; Le Bas JF; Stieglitz P; Cure M
    Med Sci Sports Exerc; 1992 Apr; 24(4):420-5. PubMed ID: 1560737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Popliteal artery hemodynamics: MR imaging-US correlation.
    Dousset V; Wehrli FW; Louie A; Listerud J
    Radiology; 1991 May; 179(2):437-41. PubMed ID: 2014288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of intermittent pneumatic foot compression on popliteal artery haemodynamics.
    Delis KT; Labropoulos N; Nicolaides AN; Glenville B; Stansby G
    Eur J Vasc Endovasc Surg; 2000 Mar; 19(3):270-7. PubMed ID: 10753690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New redistribution index of nutritive blood flow to skeletal muscle during dynamic exercise.
    Asanoi H; Wada O; Miyagi K; Ishizaka S; Kameyama T; Seto H; Sasayama S
    Circulation; 1992 Apr; 85(4):1457-63. PubMed ID: 1555286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure.
    Sullivan MJ; Knight JD; Higginbotham MB; Cobb FR
    Circulation; 1989 Oct; 80(4):769-81. PubMed ID: 2791242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-energy phosphate metabolism in the calf muscle of healthy humans during incremental calf exercise with and without moderate cuff stenosis.
    Greiner A; Esterhammer R; Bammer D; Messner H; Kremser C; Jaschke WR; Fraedrich G; Schocke MF
    Eur J Appl Physiol; 2007 Mar; 99(5):519-31. PubMed ID: 17206438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effects of intermittent pneumatic compression on popliteal artery blood flow.
    Labropoulos N; Watson WC; Mansour MA; Kang SS; Littooy FN; Baker WH
    Arch Surg; 1998 Oct; 133(10):1072-5. PubMed ID: 9790203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.