BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 1446389)

  • 1. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion.
    Szabó C; Csáki C; Benyó Z; Reivich M; Kovách AG
    Circ Shock; 1992 Aug; 37(4):307-16. PubMed ID: 1446389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of superoxide dismutase on hemorrhagic hypotension and retransfusion-evoked middle cerebral artery endothelial dysfunction.
    Szabó C; Csáki C; Benyó Z; Marczis J; Reivich M; Kovách AG
    Circ Shock; 1994 Nov; 44(3):104-10. PubMed ID: 7600633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemorrhagic hypotension impairs endothelium-dependent relaxations in the renal artery of the cat.
    Szabó C; Faragó M; Horváth I; Lohinai Z; Kovách AG
    Circ Shock; 1992 Mar; 36(3):238-41. PubMed ID: 1611708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H; Katusic ZS
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of platelet-activating factor in the development of endothelial dysfunction in hemorrhagic hypotension and retransfusion.
    Csáki C; Szabó C; Benyó Z; Kovách AG
    Thromb Res; 1992 Apr; 66(1):23-31. PubMed ID: 1412179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of L-arginine analogues in isolated cat cerebral arteries.
    Fraile ML; López de Pablo AL; Marco EJ; Sanz L; Moreno MJ; Conde MV
    Rev Esp Fisiol; 1993 Sep; 49(3):187-93. PubMed ID: 8310170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y; Ku DD; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of ATP in the non-adrenergic non-cholinergic inhibitory neurotransmission of lamb isolated coronary small arteries.
    Simonsen U; García-Sacristán A; Prieto D
    Br J Pharmacol; 1997 Feb; 120(3):411-20. PubMed ID: 9031744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the cat.
    Kovách AG; Szabó C; Benyó Z; Csáki C; Greenberg JH; Reivich M
    J Physiol; 1992 Apr; 449():183-96. PubMed ID: 1522509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced prostanoid-mediated vasorelaxation in pulmonary arteries isolated during experimental endotoxemia.
    Myers TP; Myers PR; Adams HR; Parker JL
    Shock; 1999 Jun; 11(6):436-42. PubMed ID: 10454834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The L-arginine-nitric oxide pathway in the canine femoral vascular bed: in vitro and in vivo experiments.
    Richard V; Gosgnach M; Drieu la Rochelle C; Giudicelli JF; Berdeaux A
    Fundam Clin Pharmacol; 1991; 5(9):777-88. PubMed ID: 1794833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of the L-arginine/nitric oxide pathway and endothelin-1 in experimental heart failure.
    Noll G; Tschudi MR; Novosel D; Lüscher TF
    J Cardiovasc Pharmacol; 1994 Jun; 23(6):916-21. PubMed ID: 7523783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery.
    Yao K; Tschudi M; Flammer J; Lüscher TF
    Invest Ophthalmol Vis Sci; 1991 May; 32(6):1791-8. PubMed ID: 2032802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sydnonimine C87-3754 evokes endothelium-independent relaxations and prevents endothelium-dependent contractions in blood vessels of the dog.
    Schini VB; Bond R; Gao Y; Illiano S; Junquero DC; Mombouli JV; Nagao T; Smart F; Vanhoutte PM
    J Cardiovasc Pharmacol; 1993; 22 Suppl 7():S10-6. PubMed ID: 7504762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery.
    Cosentino F; Sill JC; Katusić ZS
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H413-8. PubMed ID: 8383455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery.
    Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Dec; 107(4):1102-7. PubMed ID: 1467832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-mediated retinal arteriolar and arterial dilatation induced by substance P.
    Kitamura Y; Okamura T; Kani K; Toda N
    Invest Ophthalmol Vis Sci; 1993 Sep; 34(10):2859-65. PubMed ID: 7689544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predominant role for nitric oxide in the relaxation induced by acetylcholine in cat cerebral arteries.
    Alonso MJ; Salaices M; Sanchez-Ferrer CF; Marin J
    J Pharmacol Exp Ther; 1992 Apr; 261(1):12-20. PubMed ID: 1313867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.