These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 1446408)
1. The role of oxidized lipoproteins in the pathogenesis of atherosclerosis. Kita T; Yokode M; Ishii K; Kume N; Nagano Y; Arai H; Otani H; Ueda Y; Hara S Clin Exp Pharmacol Physiol Suppl; 1992; 20():37-42. PubMed ID: 1446408 [TBL] [Abstract][Full Text] [Related]
2. [Front line of oxidized lipoproteins: role of oxidized lipoproteins in atherogenesis and cardiovascular disease risk]. Yoshida H Rinsho Byori; 2010 Jun; 58(6):622-30. PubMed ID: 20662275 [TBL] [Abstract][Full Text] [Related]
3. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Staprans I; Pan XM; Rapp JH; Feingold KR Mol Nutr Food Res; 2005 Nov; 49(11):1075-82. PubMed ID: 16270280 [TBL] [Abstract][Full Text] [Related]
4. The role of oxidized low density lipoprotein in the pathogenesis of atherosclerosis. Kita T; Ishii K; Yokode M; Kume N; Nagano Y; Arai H; Kawai C Eur Heart J; 1990 Aug; 11 Suppl E():122-7. PubMed ID: 2226520 [TBL] [Abstract][Full Text] [Related]
5. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Mertens A; Verhamme P; Bielicki JK; Phillips MC; Quarck R; Verreth W; Stengel D; Ninio E; Navab M; Mackness B; Mackness M; Holvoet P Circulation; 2003 Apr; 107(12):1640-6. PubMed ID: 12668499 [TBL] [Abstract][Full Text] [Related]
6. Apolipoprotein B-bound lipids as a marker for evaluation of low density lipoprotein oxidation in vivo. Tertov VV; Kaplun VV; Dvoryantsev SN; Orekhov AN Biochem Biophys Res Commun; 1995 Sep; 214(2):608-13. PubMed ID: 7677772 [TBL] [Abstract][Full Text] [Related]
7. Influence of native and modified lipoproteins on migration of mouse peritoneal macrophages and the effect of the antioxidants vitamin E and Probucol. Trach CC; Wülfroth PM; Severs NJ; Robenek H Eur J Cell Biol; 1996 Oct; 71(2):199-205. PubMed ID: 8905298 [TBL] [Abstract][Full Text] [Related]
8. [Studies on atherosclerosis with an animal model]. Nagano Y; Kita T Nihon Ronen Igakkai Zasshi; 1992 Apr; 29(4):249-52. PubMed ID: 1614001 [TBL] [Abstract][Full Text] [Related]
9. Atherogenic, dense low-density lipoproteins. Pathophysiology and new therapeutic approaches. Chapman MJ; Guérin M; Bruckert E Eur Heart J; 1998 Feb; 19 Suppl A():A24-30. PubMed ID: 9519339 [TBL] [Abstract][Full Text] [Related]
10. [Prevention of atherosclerosis using an antioxidant]. Ishii K; Kita T Nihon Ronen Igakkai Zasshi; 1990 Mar; 27(2):177-81. PubMed ID: 2384991 [TBL] [Abstract][Full Text] [Related]
11. Effects of probucol on lipoprotein protein kinetics. Nestel PJ Artery; 1982; 10(2):95-8. PubMed ID: 7092582 [TBL] [Abstract][Full Text] [Related]
12. Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Tsujita M; Yokoyama S Biochemistry; 1996 Oct; 35(40):13011-20. PubMed ID: 8855936 [TBL] [Abstract][Full Text] [Related]
13. Antioxidants suppress plasma levels of lectinlike oxidized low-density lipoprotein receptor-ligands and reduce atherosclerosis in watanabe heritable hyperlipidemic rabbits. Oka K; Yasuhara M; Suzumura K; Tanaka K; Sawamura T J Cardiovasc Pharmacol; 2006 Oct; 48(4):177-83. PubMed ID: 17086097 [TBL] [Abstract][Full Text] [Related]
14. Plasma lipoproteins are required for both basal and stress-induced adrenal glucocorticoid synthesis and protection against endotoxemia in mice. Hoekstra M; Korporaal SJ; Li Z; Zhao Y; Van Eck M; Van Berkel TJ Am J Physiol Endocrinol Metab; 2010 Dec; 299(6):E1038-43. PubMed ID: 20858753 [TBL] [Abstract][Full Text] [Related]
15. Prevention of atherosclerotic progression in Watanabe rabbits by probucol. Kita T; Nagano Y; Yokode M; Ishii K; Kume N; Narumiya S; Kawai C Am J Cardiol; 1988 Jul; 62(3):13B-19B. PubMed ID: 3394648 [TBL] [Abstract][Full Text] [Related]
16. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Miller YI; Choi SH; Fang L; Tsimikas S Subcell Biochem; 2010; 51():229-51. PubMed ID: 20213546 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory effects of HepG2 cell-derived apolipoprotein A-I-containing lipoproteins on cholesteryl ester accumulation in macrophages. Kawano T; Hakamata H; Ohta T; Ding Y; Yoshida M; Ueda S; Horiuchi S Biochemistry; 1997 Aug; 36(32):9816-25. PubMed ID: 9245414 [TBL] [Abstract][Full Text] [Related]
18. In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Steinberg D; Parthasarathy S; Carew TE Am J Cardiol; 1988 Jul; 62(3):6B-12B. PubMed ID: 3394654 [TBL] [Abstract][Full Text] [Related]
19. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Carew TE; Schwenke DC; Steinberg D Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7725-9. PubMed ID: 3478721 [TBL] [Abstract][Full Text] [Related]
20. Probucol selectively increases oxidation of atherogenic lipoproteins in cholesterol-fed mice and in Watanabe heritable hyperlipidemic rabbits. Lauridsen ST; Mortensen A Atherosclerosis; 1999 Jan; 142(1):169-78. PubMed ID: 9920518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]