BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14465981)

  • 1. Two alfalfa factors with cellulolytic activity for rumen microorganisms.
    Liuzzo JA; Hansard SL; Lee JG; Novak AF
    J Nutr; 1961 Oct; 75(2):231-4. PubMed ID: 14465981
    [No Abstract]   [Full Text] [Related]  

  • 2. Cellulolytic-factor activity of certain short-chain fatty acids for rumen microorganisms in vitro.
    BENTLEY OG; JOHNSON RR; HERSHBERGER TV; CLINE JH; MOXON AL
    J Nutr; 1955 Nov; 57(3):389-400. PubMed ID: 13272080
    [No Abstract]   [Full Text] [Related]  

  • 3. Some factors affecting cellulose digestion by rumen microorganisms in vitro.
    MACLEOD RA; MURRAY JF
    J Nutr; 1956 Oct; 60(2):245-59. PubMed ID: 13367909
    [No Abstract]   [Full Text] [Related]  

  • 4. Dissimilation of alfalfa saponins by rumen bacteria.
    GUTIERREZ J; DAVIS RE; LINDAHL IL
    Science; 1958 Feb; 127(3294):335. PubMed ID: 13506581
    [No Abstract]   [Full Text] [Related]  

  • 5. Microbiological utilization of cellulose and wood. I. Laboratory fermentations of cellulose by rumen organisms.
    STRANKS DW
    Can J Microbiol; 1956 Feb; 2(1):56-62. PubMed ID: 13293585
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of some steroid compounds on ovine rumen function.
    BROOKS CC; GARNER GB; MUHRER ME; PFANDER WH
    Science; 1954 Sep; 120(3116):455-6. PubMed ID: 13195671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale.
    Kong Y; Xia Y; Seviour R; He M; McAllister T; Forster R
    FEMS Microbiol Ecol; 2012 Apr; 80(1):159-67. PubMed ID: 22224860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rumen removal rates of some chemically defined fractions of 14-C-labeled alfalfa.
    Alexander CL; Meyer RM; Bartley EE
    J Anim Sci; 1969 Nov; 29(5):746-56. PubMed ID: 5391974
    [No Abstract]   [Full Text] [Related]  

  • 9. CELLULOLYTIC COCCI OCCURRING IN THE RUMEN OF SHEEP CONDITIONED TO LUCERNE HAY.
    KISTNER A; GOUWS L
    J Gen Microbiol; 1964 Mar; 34():447-58. PubMed ID: 14135549
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total mixed ration on the ability of lactating dairy cows to cope with a short-term feed withholding and refeeding challenge.
    Thomson AL; Humphries DJ; Crompton LA; Reynolds CK
    J Dairy Sci; 2018 May; 101(5):4180-4192. PubMed ID: 29454691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture.
    Berthiaume R; Benchaar C; Chaves AV; Tremblay GF; Castonguay Y; Bertrand A; Bélanger G; Michaud R; Lafrenière C; McAllister TA; Brito AF
    J Dairy Sci; 2010 Feb; 93(2):693-700. PubMed ID: 20105540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves.
    Mirzaei M; Khorvash M; Ghorbani GR; Kazemi-Bonchenari M; Riasi A; Nabipour A; van den Borne JJ
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):553-64. PubMed ID: 25039298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on in situ degradation of forage cell components in alfalfa and Italian ryegrass.
    Andrighetto I; Bailoni L; Cozzi G; Tolosa HF; Hartman B; Hinds M; Sapienza D
    J Dairy Sci; 1993 Sep; 76(9):2624-31. PubMed ID: 8227664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the ash content of the rumen ingesta on the hydrogen ion concentration in the bovine rumen.
    CASON JL; RUBY ES; STALLCUP OT
    J Nutr; 1954 Mar; 52(3):457-65. PubMed ID: 13143445
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative availability of phytin and inorganic phosphorus to rumen microorganisms, in vitro.
    BARTH J; HANSARD SL
    Proc Soc Exp Biol Med; 1962 Feb; 109():448-51. PubMed ID: 13865411
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of alfalfa silage storage structure and rumen-protected methionine on production in lactating dairy cows.
    Broderick GA; Muck RE
    J Dairy Sci; 2009 Mar; 92(3):1281-9. PubMed ID: 19233821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids.
    Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V
    J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemistry of rumen protozoa. 1. Carbohydrate fermentation by Dasytricha and Isotricha.
    HOWARD BH
    Biochem J; 1959 Apr; 71(4):671-5. PubMed ID: 13651115
    [No Abstract]   [Full Text] [Related]  

  • 20. Nutritional requirements of the predominant rumen cellulolytic bacteria.
    Bryant MP
    Fed Proc; 1973 Jul; 32(7):1809-13. PubMed ID: 4718898
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.