These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14465981)

  • 1. Two alfalfa factors with cellulolytic activity for rumen microorganisms.
    Liuzzo JA; Hansard SL; Lee JG; Novak AF
    J Nutr; 1961 Oct; 75(2):231-4. PubMed ID: 14465981
    [No Abstract]   [Full Text] [Related]  

  • 2. Cellulolytic-factor activity of certain short-chain fatty acids for rumen microorganisms in vitro.
    BENTLEY OG; JOHNSON RR; HERSHBERGER TV; CLINE JH; MOXON AL
    J Nutr; 1955 Nov; 57(3):389-400. PubMed ID: 13272080
    [No Abstract]   [Full Text] [Related]  

  • 3. Some factors affecting cellulose digestion by rumen microorganisms in vitro.
    MACLEOD RA; MURRAY JF
    J Nutr; 1956 Oct; 60(2):245-59. PubMed ID: 13367909
    [No Abstract]   [Full Text] [Related]  

  • 4. Dissimilation of alfalfa saponins by rumen bacteria.
    GUTIERREZ J; DAVIS RE; LINDAHL IL
    Science; 1958 Feb; 127(3294):335. PubMed ID: 13506581
    [No Abstract]   [Full Text] [Related]  

  • 5. Microbiological utilization of cellulose and wood. I. Laboratory fermentations of cellulose by rumen organisms.
    STRANKS DW
    Can J Microbiol; 1956 Feb; 2(1):56-62. PubMed ID: 13293585
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of some steroid compounds on ovine rumen function.
    BROOKS CC; GARNER GB; MUHRER ME; PFANDER WH
    Science; 1954 Sep; 120(3116):455-6. PubMed ID: 13195671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale.
    Kong Y; Xia Y; Seviour R; He M; McAllister T; Forster R
    FEMS Microbiol Ecol; 2012 Apr; 80(1):159-67. PubMed ID: 22224860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rumen removal rates of some chemically defined fractions of 14-C-labeled alfalfa.
    Alexander CL; Meyer RM; Bartley EE
    J Anim Sci; 1969 Nov; 29(5):746-56. PubMed ID: 5391974
    [No Abstract]   [Full Text] [Related]  

  • 9. CELLULOLYTIC COCCI OCCURRING IN THE RUMEN OF SHEEP CONDITIONED TO LUCERNE HAY.
    KISTNER A; GOUWS L
    J Gen Microbiol; 1964 Mar; 34():447-58. PubMed ID: 14135549
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of alfalfa (Medicago sativa) silage chop length and inclusion rate within a total mixed ration on the ability of lactating dairy cows to cope with a short-term feed withholding and refeeding challenge.
    Thomson AL; Humphries DJ; Crompton LA; Reynolds CK
    J Dairy Sci; 2018 May; 101(5):4180-4192. PubMed ID: 29454691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture.
    Berthiaume R; Benchaar C; Chaves AV; Tremblay GF; Castonguay Y; Bertrand A; Bélanger G; Michaud R; Lafrenière C; McAllister TA; Brito AF
    J Dairy Sci; 2010 Feb; 93(2):693-700. PubMed ID: 20105540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves.
    Mirzaei M; Khorvash M; Ghorbani GR; Kazemi-Bonchenari M; Riasi A; Nabipour A; van den Borne JJ
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):553-64. PubMed ID: 25039298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.
    Beauchemin KA; Yang WZ; Rode LM
    J Dairy Sci; 2003 Feb; 86(2):630-43. PubMed ID: 12647969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on in situ degradation of forage cell components in alfalfa and Italian ryegrass.
    Andrighetto I; Bailoni L; Cozzi G; Tolosa HF; Hartman B; Hinds M; Sapienza D
    J Dairy Sci; 1993 Sep; 76(9):2624-31. PubMed ID: 8227664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the ash content of the rumen ingesta on the hydrogen ion concentration in the bovine rumen.
    CASON JL; RUBY ES; STALLCUP OT
    J Nutr; 1954 Mar; 52(3):457-65. PubMed ID: 13143445
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative availability of phytin and inorganic phosphorus to rumen microorganisms, in vitro.
    BARTH J; HANSARD SL
    Proc Soc Exp Biol Med; 1962 Feb; 109():448-51. PubMed ID: 13865411
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of alfalfa silage storage structure and rumen-protected methionine on production in lactating dairy cows.
    Broderick GA; Muck RE
    J Dairy Sci; 2009 Mar; 92(3):1281-9. PubMed ID: 19233821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids.
    Colman E; Khafipour E; Vlaeminck B; De Baets B; Plaizier JC; Fievez V
    J Dairy Sci; 2013 Jul; 96(7):4100-11. PubMed ID: 23628250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemistry of rumen protozoa. 1. Carbohydrate fermentation by Dasytricha and Isotricha.
    HOWARD BH
    Biochem J; 1959 Apr; 71(4):671-5. PubMed ID: 13651115
    [No Abstract]   [Full Text] [Related]  

  • 20. Nutritional requirements of the predominant rumen cellulolytic bacteria.
    Bryant MP
    Fed Proc; 1973 Jul; 32(7):1809-13. PubMed ID: 4718898
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.