These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 14466265)

  • 1. The metabolism of p-galacturonic acid and its methyl ester in the detached ripening strawberry.
    LOEWUS FA; KELLY S
    Arch Biochem Biophys; 1961 Dec; 95():483-93. PubMed ID: 14466265
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry.
    FINKLE BJ; KELLY S; LOEWUS FA
    Biochim Biophys Acta; 1960 Feb; 38():332-9. PubMed ID: 13849796
    [No Abstract]   [Full Text] [Related]  

  • 3. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. IV. A comparative study of D-galacturonic acid and L-ascorbic acid formation.
    LOEWUS FA; JANG R; SEEGMILLER CG
    J Biol Chem; 1958 May; 232(1):533-41. PubMed ID: 13549439
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of D-galacturonic acid by Pseudomonas syringae.
    KILGORE WW; BECKMAN DM
    Biochim Biophys Acta; 1962 Apr; 58():631-2. PubMed ID: 14455905
    [No Abstract]   [Full Text] [Related]  

  • 5. INOSITOL METABOLISM IN PLANTS. II. THE ABSOLUTE CONFIGURATION OF D-XYLOSE-5-T DERIVED METABOLICALLY FROM MYO-INOSITOL-2-T IN THE RIPENING STRAWBERRY.
    LOEWUS FA
    Arch Biochem Biophys; 1964 Jun; 105():590-8. PubMed ID: 14236645
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphorylation of D-galacturonic acid by extracts from germinating seeds of Phaseolus aureus.
    NEUFELD EF; FEINGOLD DS; ILVES SM; KESSLER G; HASSID WZ
    J Biol Chem; 1961 Dec; 236():3102-5. PubMed ID: 14479161
    [No Abstract]   [Full Text] [Related]  

  • 7. Identity of L-ascorbic acid formed from D-glucose by the strawberry (Fragaria).
    LOEWUS FA; KELLY S
    Nature; 1961 Sep; 191():1059-61. PubMed ID: 13763148
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation.
    Zhang J; Wang X; Yu O; Tang J; Gu X; Wan X; Fang C
    J Exp Bot; 2011 Jan; 62(3):1103-18. PubMed ID: 21041374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis.
    Cumplido-Laso G; Medina-Puche L; Moyano E; Hoffmann T; Sinz Q; Ring L; Studart-Wittkowski C; Caballero JL; Schwab W; Muñoz-Blanco J; Blanco-Portales R
    J Exp Bot; 2012 Jun; 63(11):4275-90. PubMed ID: 22563120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry.
    Lunkenbein S; Bellido M; Aharoni A; Salentijn EM; Kaldenhoff R; Coiner HA; Muñoz-Blanco J; Schwab W
    Plant Physiol; 2006 Mar; 140(3):1047-58. PubMed ID: 16443693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of D-glucuronic acid and D-galacturonic acid by Phaseolus aureus seedlings.
    KESSLER G; NEUFELD EF; FEINGOLD DS; HASSID WZ
    J Biol Chem; 1961 Feb; 236():308-12. PubMed ID: 13752745
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.
    Li D; Li L; Luo Z; Mou W; Mao L; Ying T
    PLoS One; 2015; 10(6):e0130037. PubMed ID: 26053069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The resorption of D-galacturonic acid in the small intestine of the rat].
    KETZ HA; BOCK W
    Biochem Z; 1961; 335():92-100. PubMed ID: 14455444
    [No Abstract]   [Full Text] [Related]  

  • 14. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits.
    Medina-Puche L; Cumplido-Laso G; Amil-Ruiz F; Hoffmann T; Ring L; Rodríguez-Franco A; Caballero JL; Schwab W; Muñoz-Blanco J; Blanco-Portales R
    J Exp Bot; 2014 Feb; 65(2):401-17. PubMed ID: 24277278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uridine diphosphate glucuronic acid as glucuronyl donor in the synthesis of ester, aliphatic and steroid glucuronides.
    DUTTON GJ
    Biochem J; 1956 Dec; 64(4):693-701. PubMed ID: 13382821
    [No Abstract]   [Full Text] [Related]  

  • 16. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa).
    Wang S; Song M; Guo J; Huang Y; Zhang F; Xu C; Xiao Y; Zhang L
    Plant Biotechnol J; 2018 Mar; 16(3):737-748. PubMed ID: 28851008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acylphloroglucinol Biosynthesis in Strawberry Fruit.
    Song C; Ring L; Hoffmann T; Huang FC; Slovin J; Schwab W
    Plant Physiol; 2015 Nov; 169(3):1656-70. PubMed ID: 26169681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening.
    Ornelas-Paz Jde J; Yahia EM; Ramírez-Bustamante N; Pérez-Martínez JD; Escalante-Minakata Mdel P; Ibarra-Junquera V; Acosta-Muñiz C; Guerrero-Prieto V; Ochoa-Reyes E
    Food Chem; 2013 May; 138(1):372-81. PubMed ID: 23265501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymic synthesis of uridine diphosphate glucuronic acid and uridine diphosphate galacturonic acid with extracts from Phaseolus aureus seedlings.
    FEINGOLD DS; NEUFELD EF; HASSID WZ
    Arch Biochem Biophys; 1958 Dec; 78(2):401-6. PubMed ID: 13618023
    [No Abstract]   [Full Text] [Related]  

  • 20. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes.
    Bianco L; Lopez L; Scalone AG; Di Carli M; Desiderio A; Benvenuto E; Perrotta G
    J Proteomics; 2009 May; 72(4):586-607. PubMed ID: 19135558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.