BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1447127)

  • 1. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions.
    Eaton RW; Chapman PJ
    J Bacteriol; 1992 Dec; 174(23):7542-54. PubMed ID: 1447127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression, purification and preliminary crystallographic studies of NahF, a salicylaldehyde dehydrogenase from Pseudomonas putida G7 involved in naphthalene degradation.
    Coitinho JB; Costa DM; Guimarães SL; de Góes AM; Nagem RA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jan; 68(Pt 1):93-7. PubMed ID: 22232182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353.
    Dorn JG; Frye RJ; Maier RM
    Appl Environ Microbiol; 2003 Apr; 69(4):2209-16. PubMed ID: 12676702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: The uncharacterized Pseudomonas aeruginosa PA4189 is a novel and efficient aminoacetaldehyde dehydrogenase.
    Muñoz-Clares AFALJLGJAJRA
    Biochem J; 2024 May; 481(10):667. PubMed ID: 38727693
    [No Abstract]   [Full Text] [Related]  

  • 5. A mutagenic analysis of NahE, a hydratase-aldolase in the naphthalene degradative pathway.
    Lancaster EB; Johnson WH; LeVieux JA; Hardtke HA; Zhang YJ; Whitman CP
    Arch Biochem Biophys; 2023 Jan; 733():109471. PubMed ID: 36522814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression, purification and crystallization of a novel metagenome-derived salicylaldehyde dehydrogenase from Alpine soil.
    Dandare SU; Håkansson M; Svensson LA; Timson DJ; Allen CCR
    Acta Crystallogr F Struct Biol Commun; 2022 Apr; 78(Pt 4):161-169. PubMed ID: 35400668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals.
    Monga D; Kaur P; Singh B
    Curr Res Microb Sci; 2022; 3():100092. PubMed ID: 35005657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility.
    Lopez-Echartea E; Suman J; Smrhova T; Ridl J; Pajer P; Strejcek M; Uhlik O
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33693598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation.
    Correa-García S; Rheault K; Tremblay J; Séguin A; Yergeau E
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Polycyclic Aromatic Hydrocarbon (PAH) degradation activities and genome analysis of a novel strain
    Elufisan TO; Rodríguez-Luna IC; Oyedara OO; Sánchez-Varela A; Hernández-Mendoza A; Dantán Gonzalez E; Paz-González AD; Muhammad K; Rivera G; Villalobos-Lopez MA; Guo X
    PeerJ; 2020; 8():e8102. PubMed ID: 31934497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Conversion of Toxic Resin Acids.
    Luchnikova NA; Ivanova KM; Tarasova EV; Grishko VV; Ivshina IB
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of dihydroxy polycyclic aromatic hydrocarbons and activities of two dioxygenases in the phenanthrene degradative pathway.
    Erwin KL; Johnson WH; Meichan AJ; Whitman CP
    Arch Biochem Biophys; 2019 Sep; 673():108081. PubMed ID: 31445023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Characterization of the Hydratase-Aldolases, NahE and PhdJ: Implications for the Specificity, Catalysis, and N-Acetylneuraminate Lyase Subgroup of the Aldolase Superfamily.
    LeVieux JA; Medellin B; Johnson WH; Erwin K; Li W; Johnson IA; Zhang YJ; Whitman CP
    Biochemistry; 2018 Jun; 57(25):3524-3536. PubMed ID: 29856600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic insights of aromatic hydrocarbon degrading
    Rajkumari J; Paikhomba Singha L; Pandey P
    3 Biotech; 2018 Feb; 8(2):118. PubMed ID: 29430379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt Adaptation and Evolutionary Implication of a Nah-related PAHs Dioxygenase cloned from a Halophilic Phenanthrene Degrading Consortium.
    Wang C; Guo G; Huang Y; Hao H; Wang H
    Sci Rep; 2017 Oct; 7(1):12525. PubMed ID: 28970580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons.
    Fulekar MH
    Bioresour Bioprocess; 2017; 4(1):28. PubMed ID: 28725525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective.
    Gkorezis P; Daghio M; Franzetti A; Van Hamme JD; Sillen W; Vangronsveld J
    Front Microbiol; 2016; 7():1836. PubMed ID: 27917161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review.
    Ghosal D; Ghosh S; Dutta TK; Ahn Y
    Front Microbiol; 2016; 7():1369. PubMed ID: 27630626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.
    Tomás-Gallardo L; Gómez-Álvarez H; Santero E; Floriano B
    Microb Biotechnol; 2014 Mar; 7(2):100-13. PubMed ID: 24325207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple degradation pathways of phenanthrene by
    Gao S; Seo JS; Wang J; Keum YS; Li J; Li QX
    Int Biodeterior Biodegradation; 2013 Apr; 79():98-104. PubMed ID: 23539472
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.