BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 1447145)

  • 1. Elucidation of the complete Azorhizobium nicotinate catabolism pathway.
    Kitts CL; Lapointe JP; Lam VT; Ludwig RA
    J Bacteriol; 1992 Dec; 174(23):7791-7. PubMed ID: 1447145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation.
    Buckmiller LM; Lapointe JP; Ludwig RA
    J Bacteriol; 1991 Mar; 173(6):2017-25. PubMed ID: 2002004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cyclic intermediates in Azorhizobium caulinodans nicotinate catabolism.
    Kitts CL; Schaechter LE; Rabin RS; Ludwig RA
    J Bacteriol; 1989 Jun; 171(6):3406-11. PubMed ID: 2722754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinate catabolism is dispensable and nicotinate anabolism is crucial in Azorhizobium caulinodans growing in batch culture and chemostat culture on N2 as The N source.
    Pronk AF; Stouthamer AH; Van Verseveld HW; Boogerd FC
    J Bacteriol; 1995 Jan; 177(1):75-81. PubMed ID: 7798152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizobium sp. strain ORS571 grows synergistically on N2 and nicotinate as N sources.
    Ludwig RA
    J Bacteriol; 1986 Jan; 165(1):304-7. PubMed ID: 3753598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation.
    Kaminski PA; Kitts CL; Zimmerman Z; Ludwig RA
    J Bacteriol; 1996 Oct; 178(20):5989-94. PubMed ID: 8830696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azorhizobium caulinodans respires with at least four terminal oxidases.
    Kitts CL; Ludwig RA
    J Bacteriol; 1994 Feb; 176(3):886-95. PubMed ID: 8300541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate.
    Zhang M; Gao C; Guo X; Guo S; Kang Z; Xiao D; Yan J; Tao F; Zhang W; Dong W; Liu P; Yang C; Ma C; Xu P
    Nat Commun; 2018 May; 9(1):2114. PubMed ID: 29844506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Glutarate Catabolism by GntR Family Regulator CsiR and LysR Family Regulator GcdR in Pseudomonas putida KT2440.
    Zhang M; Kang Z; Guo X; Guo S; Xiao D; Liu Y; Ma C; Gao C; Xu P
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri.
    Alhapel A; Darley DJ; Wagener N; Eckel E; Elsner N; Pierik AJ
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12341-6. PubMed ID: 16894175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azorhizobium caulinodans pyruvate dehydrogenase activity is dispensable for aerobic but required for microaerobic growth.
    Pauling DC; Lapointe JP; Paris CM; Ludwig RA
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2233-2245. PubMed ID: 11496000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biodegradation of pyridine by Shinella zoogloeoides BC026].
    Sun QH; Bai YH; Zhao C; Wen DH; Tang XY
    Huan Jing Ke Xue; 2008 Oct; 29(10):2938-43. PubMed ID: 19143398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-Hydroxybutyryl-CoA, an intermediate in glutarate catabolism.
    NUMA S; ISHIMURA Y; NISHIZUKA Y; HAYAISHI O
    Biochem Biophys Res Commun; 1961 Oct; 6():38-43. PubMed ID: 14480702
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific glutaryl-CoA dehydrogenating activity is deficient in cultured fibroblasts from glutaric aciduria patients.
    Hyman DB; Tanaka K
    J Clin Invest; 1984 Mar; 73(3):778-84. PubMed ID: 6423663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the fixNOQP region of Azorhizobium caulinodans.
    Mandon K; Kaminski PA; Elmerich C
    J Bacteriol; 1994 May; 176(9):2560-8. PubMed ID: 8169204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency.
    Sauer SW
    J Inherit Metab Dis; 2007 Oct; 30(5):673-80. PubMed ID: 17879145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ determination of the reduction levels of cytochromes b and c in growing bacteria: a case study with N2-fixing Azorhizobium caulinodans.
    Pronk AF; Boogerd FC; Stoof C; Oltmann LF; Stouthamer AH; van Verseveld HW
    Anal Biochem; 1993 Oct; 214(1):149-55. PubMed ID: 8250218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of glutaryl-CoA dehydrogenase.
    Rao KS; Albro M; Dwyer TM; Frerman FE
    Biochemistry; 2006 Dec; 45(51):15853-61. PubMed ID: 17176108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus.
    Janssen PH; Schnik B
    J Bacteriol; 1995 Jan; 177(2):277-82. PubMed ID: 7814315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria.
    Watson GK; Cain RB
    Biochem J; 1975 Jan; 146(1):157-72. PubMed ID: 1147895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.